版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Computer Science University of Texas at Dallas Richardson TX 75083 United States Commun. Syst. Engineering Department Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
出 版 物:《Journal of Discrete Algorithms》 (J. Discrete Algorithms)
年 卷 期:2004年第2卷第3期
页 面:333-345页
核心收录:
学科分类:1202[管理学-工商管理] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 0835[工学-软件工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学]
摘 要:In this paper we consider a problem of distance selection in the arrangement of hyperplanes induced by n given points. Given a set of n points in d-dimensional space and a number k, 1 &le k &le (d), determine the hyperplane that is spanned by d points and at distance ranked by k from the origin. For the planar case we present an O(n log2 n) runtime algorithm using parametric search partly different from the usual approach [N. Megiddo, J. ACM 30 (1983) 852]. We establish a connection between this problem in 3-d and the well-known 3 SUM problem using an auxiliary problem of counting the number of vertices in the arrangement of n planes that lie between two sheets of a hyperboloid. We show that the 3-d problem is almost 3SUM-hard and solve it by an O(n2 log2 n) runtime algorithm. We generalize these results to the d-dimensional (d ≥ 4) space and consider also a problem of enumerating distances. © 2003 Elsevier B.V. All rights reserved.