咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Linear-Time Algorithm for the ... 收藏

Linear-Time Algorithm for the Paired-Domination Problem in Convex Bipartite Graphs

为在凸的由两部组成的图的对支配问题的线性时间的算法

作     者:Hung, Ruo-Wei 

作者机构:Chaoyang Univ Technol Dept Comp Sci & Informat Engn Taichung 41349 Taiwan 

出 版 物:《THEORY OF COMPUTING SYSTEMS》 (计算系统理论)

年 卷 期:2012年第50卷第4期

页      面:721-738页

核心收录:

学科分类:07[理学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学] 

主  题:Graph algorithms Linear-time algorithms Paired-domination Total domination Convex bipartite graphs 

摘      要:A bipartite graph G=(U,W,E) with vertex set V=Ua(a)W is convex if there exists an ordering of the vertices of W such that for each uaU, the neighbors of u are consecutive in W. A compact representation of a convex bipartite graph for specifying such an ordering can be computed in O(|V|+|E|) time. The paired-domination problem on bipartite graphs has been shown to be NP-complete. The complexity of the paired-domination problem on convex bipartite graphs has remained unknown. In this paper, we present an O(|V|) time algorithm to solve the paired-domination problem on convex bipartite graphs given a compact representation. As a byproduct, we show that our algorithm can be directly applied to solve the total domination problem on convex bipartite graphs in the same time bound.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分