咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An eccentricity 2-approximatin... 收藏

An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time

跨越一张索的图的树的怪癖 2-approximating 在线性时间是可计算出来的

作     者:Dragan, Feodor F. 

作者机构:Kent State Univ Dept Comp Sci Algorithm Res Lab Kent OH 44242 USA 

出 版 物:《INFORMATION PROCESSING LETTERS》 (信息处理快报)

年 卷 期:2020年第154卷

页      面:105873-000页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Linear-time algorithm Chordal graphs Eccentricities Approximation Spanning trees 

摘      要:It is known that every chordal graph G = (V, E) has a spanning tree T such that, for every vertex v e V, eccG(v) eccG(v) + 2 holds (here eccG(v) := max{dG(v, u) : u E V} is the eccentricity of v in G). We show that such a spanning tree can be computed in linear time for every chordal graph. As a byproduct, we get that the eccentricities of all vertices of a chordal graph G can be computed in linear time with an additive one-sided error of at most 2, i.e., after a linear time preprocessing, for every vertex v of G, one can compute in 0(1) time an estimate e(v) of its eccentricity eccG(v) such that eccG(v) e(v) eccG(v) + 2. (C) 2019 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分