咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Treating the Gibbs phenomenon ... 收藏

Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

在 barycentric 对待吉布斯现象经由 S-Gibbs 算法的合理插值和近似

作     者:Berrut, J-P De Marchi, S. Elefante, G. Marchetti, F. 

作者机构:Univ Fribourg Dept Math Fribourg Switzerland Univ Padua Dipartimento Matemat Tullio Levi Civita Padua Italy Univ Padua Dipartimento Salute Donna & Bambino Padua Italy 

出 版 物:《APPLIED MATHEMATICS LETTERS》 (应用数学快报)

年 卷 期:2020年第103卷第0期

页      面:106196-000页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:GNCS-INdAM funds 2019 NATIRESCO project [BIRD181249] 

主  题:Barycentric rational interpolation Gibbs phenomenon Floater-Hormann interpolant AAA algorithm Fake nodes 

摘      要:In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in De Marchi et al. (2020). Numerical tests show that it yields an accurate approximation of discontinuous functions. (C) 2019 Elsevier Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分