咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Optimal Node Selection for Hyb... 收藏

Optimal Node Selection for Hybrid Attack in Underwater Acoustic Sensor Networks: A Virtual Expert-Guided Bandit Algorithm

为混合攻击在的最佳的节点选择在水下声学的传感器网络: 一个虚拟指导专家的土匪算法

作     者:Li, Xinbin Zhou, Yi Yan, Lei Zhao, Haihong Yan, Xiaodong Luo, Xi 

作者机构:Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China 

出 版 物:《IEEE SENSORS JOURNAL》 (IEEE传感器杂志)

年 卷 期:2020年第20卷第3期

页      面:1679-1687页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0804[工学-仪器科学与技术] 0702[理学-物理学] 

基  金:Natural Science Foundation of China [61873224  61571387  41976182] 

主  题:Network attack learning algorithm multi armed bandit underwater acoustic sensor networks 

摘      要:In this study, adversarial graph bandit theory is used to rapidly select the optimal attack node in underwater acoustic sensor networks (UASNs) with unknown topology. To ensure the flexibility and elusiveness of underwater attack, we propose a bandit-based hybrid attack mode that combines active jamming and passive eavesdropping. We also present a virtual expert-guided online learning algorithm to select the optimal node without priori topology information and complex calculation. The virtual expert mechanism is proposed to guide the algorithm learning. The expert establishes a virtual topology configuration, which addresses the blind exploration and energy consumption of attackers to a large extent. With the acoustic broadcast characteristic, we also put forward an expert self-updating method to follow the changes of real networks. This method enables the algorithm to commendably adapt to the dynamic environments. Simulation results verify the strong adaptability and robustness of the proposed algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分