版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Tokyo Grad Sch Informat Sci & Technol Dept Math Informat Bunkyo Ku 7-3-1 Hongo Tokyo 1138656 Japan RIKEN Ctr Brain Sci 2-1 Hirosawa Wako Saitama 3510198 Japan
出 版 物:《COMPUTATIONAL STATISTICS & DATA ANALYSIS》 (计算统计学与数据分析)
年 卷 期:2020年第145卷第0期
页 面:106905-000页
核心收录:
学科分类:08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:JST CREST [JPMJCR1763] MEXT KAKENHI [16H06533, 19K20222] JSPS Grants-in-Aid for Scientific Research [16H06533, 19K20222] Funding Source: KAKEN
主 题:Alternating Direction Method of Multipliers Expectation-Maximization algorithms Kendall distances Mallows models
摘 要:In analyzing ranked data, we often encounter situations in which data are partially ranked. Regarding partially ranked data as missing data, this paper addresses parameter estimation for partially ranked data under a (possibly) non-ignorable missing mechanism. We propose estimators for both complete rankings and missing mechanisms together with a simple estimation procedure. The proposed procedure leverages the structured regularization based on an adjacency structure behind partially ranked data as well as the Expectation-Maximization algorithm. The experimental results demonstrate that the proposed estimator works well under non-ignorable missing mechanisms. Published by Elsevier B.V.