版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Autonoma Metropolitana Dept Matemat Ave San Rafael Atlixco 186 Mexico City 09340 DF Mexico
出 版 物:《EUROPEAN JOURNAL OF MATHEMATICS》 (Eur. J. Math.)
年 卷 期:2020年第6卷第1期
页 面:88-97页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Domination by a space Strong domination by a space Function spaces Lindelof
摘 要:We establish that an uncountable space X must be essentially uncountable whenever its extent and tightness are countable. As a consequence, the equality ext(X)=t(X)=omega$$\mathrm{ext}(X)= t(X)=\omega $$\end{document} implies that the space Cp(X,[0,1]) is discretely selective. If X is a metrizable space, then Cp(X,[0,1])has the Banakh property if and only if so does Cp(Y,[0,1]) for some closed separable Y subset of XWe apply the above results to show that, for a metrizable X, the space Cp(X,[0,1])is strongly dominated by a second countable space if and only if X is homeomorphic to D circle plus M where D is a discrete space and M is countable. For a metrizable space X, we also prove that Cp(X,[0,1])has the Lindelof sigma-property if and only if the set of non-isolated points of X is second countable. Our results solve several open questions.