咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Road segmentation with image-L... 收藏

Road segmentation with image-LiDAR data fusion in deep neural network

有图象的道路分割 -- 在深神经的网络的激光雷达数据熔化

作     者:Liu, Huafeng Yao, Yazhou Sun, Zeren Li, Xiangrui Jia, Ke Tang, Zhenming 

作者机构:Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Chengdu Univ Informat Technol Sch Comp Sci Chengdu Peoples R China 

出 版 物:《MULTIMEDIA TOOLS AND APPLICATIONS》 (多媒体工具和应用)

年 卷 期:2020年第79卷第47-48期

页      面:35503-35518页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Natural Science Foundation of China, NSFC NNSF NNSFC, (61473154) National Natural Science Foundation of China, NSFC NNSF NNSFC 

主  题:Road segmentation Data fusion Deep learning 

摘      要:Robust road segmentation is a key challenge in self-driving research. Though many image based methods have been studied and high performances in dataset evaluations have been reported, developing robust and reliable road segmentation is still a major challenge. Data fusion across different sensors to improve the performance of road segmentation is widely considered an important and irreplaceable solution. In this paper, we propose a novel structure to fuse image and LiDAR point cloud in an end-to-end semantic segmentation network, in which the fusion is performed at decoder stage instead of at, more commonly, encoder stage. During fusion, we improve the multi-scale LiDAR map generation to increase the precision of multi-scale LiDAR map by introducing pyramid projection method. Additionally, we adapted the multi-path refinement network with our fusion strategy and improve the road prediction compared with transpose convolution with skip layers. Our approach has been tested on KITTI ROAD dataset and have a competitive performance.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分