版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:山西大学计算机与信息技术学院太原030006 山西大学计算智能与中文信息处理教育部重点实验室太原030006
出 版 物:《计算机科学与探索》 (Journal of Frontiers of Computer Science and Technology)
年 卷 期:2020年第14卷第5期
页 面:749-759页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金Nos.61876103,61432011 山西省回国留学人员科研基金项目No.2017-014 山西省重点研发计划项目Nos.201603D111014,201903D121162 山西省1331工程项目
摘 要:在复杂网络中,度量节点之间的相似性是一项基础且具有挑战性的工作。基于邻域节点的相似性度量仅考虑了节点的邻域信息。基于路径的相似性度量考虑了节点之间的路径信息,使得多数节点与大度节点相似。为了更准确地度量节点之间的相似性且避免多数节点与大度节点相似,定义了每个节点的距离分布,并在此基础上采用相对熵和距离分布提出了一种节点相似性度量方法(DDRE)。DDRE方法通过节点之间的最短路径生成每个节点的距离分布,根据距离分布计算节点之间的相对熵,进而得到节点之间的相似性。6个真实网络数据集的对比实验结果表明,DDRE方法在对称性以及SIR模型中影响其他节点的能力这两方面表现较好。