咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >IPACS: Integrated Phase-Field ... 收藏

IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media

IPACS : 综合阶段地先进裂缝繁殖模拟器一适应,平行,为在多孔的媒介的破裂繁殖的 physics-based-discretization 阶段地框架

作     者:Wheeler, Mary F. Wick, Thomas Lee, Sanghyun 

作者机构:Univ Texas Austin Inst Computat Engn & Sci Ctr Subsurface Modeling Austin TX 78712 USA Leibniz Univ Hannover Inst Angew Math AG Wissenschaftl Rechnen Welfengarten 1 D-30167 Hannover Germany Florida State Univ Dept Math 1017 Acad Way Tallahassee FL 32306 USA 

出 版 物:《COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING》 (应用力学和工程技术中的计算机方法)

年 卷 期:2020年第367卷

页      面:113124-113124页

核心收录:

学科分类:08[工学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)] 

基  金:CSM, United States NSF (National Science Foundation), United States German Research Foundation, Priority Program 1748 [DFG SPP 1748, WI 4367/2-1, 392587580] Center for Subsurface Modeling J. T. Oden Faculty Fellowship Research Program from the Oden Institute for Computational Engineering and Sciences at the University of Texas at Austin, United States National Science Foundation, United States [NSF DMS-1913016] Division Of Mathematical Sciences Direct For Mathematical & Physical Scien Funding Source: National Science Foundation 

主  题:Phase-field fracture Porous media Computer implementation Numerical simulations Handbook IPACS 

摘      要:In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation, and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational cost. Our framework can treat two-and three-dimensional realistic field and laboratory examples. The resulting program is an in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element library ***. Representative numerical examples are included in this document. (C) 2020 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分