版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Georgia Inst Technol H Milton Stewart Sch Ind & Syst Engn Atlanta GA 30332 USA
出 版 物:《JOURNAL OF COMPLEXITY》 (复杂性杂志)
年 卷 期:2015年第31卷第1期
页 面:1-14页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:NSF [CMMI-1232623] Div Of Civil, Mechanical, & Manufact Inn Directorate For Engineering Funding Source: National Science Foundation
主 题:Smooth convex optimization Lower complexity bounds Optimal algorithms
摘 要:We derive lower bounds on the black-box oracle complexity of large-scale smooth convex minimization problems, with emphasis on minimizing smooth (with Holder continuous, with a given exponent and constant, gradient) convex functions over high-dimensional parallel to . parallel to(p)-balls, 1 = p = infinity. Our bounds turn out to be tight (up to logarithmic in the design dimension factors), and can be viewed as a substantial extension of the existing lower complexity bounds for large-scale convex minimization covering the nonsmooth case and the Euclidean smooth case (minimization of convex functions with Lipschitz continuous gradients over Euclidean balls). As a byproduct of our results, we demonstrate that the classical Conditional Gradient algorithm is near-optimal, in the sense of Information-Based Complexity Theory, when minimizing smooth convex functions over high-dimensional parallel to . parallel to(infinity)-balls and their matrix analogies - spectral norm balls in the spaces of square matrices. (C) 2014 Elsevier Inc. All rights reserved.