版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:安徽大学计算智能与信号处理教育部重点实验室合肥230039 合肥学院网络与智能信息处理重点实验室合肥230601
出 版 物:《计算机工程》 (Computer Engineering)
年 卷 期:2015年第41卷第12期
页 面:156-160页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金资助项目(61005010) 安徽省自然科学基金资助项目(1408085MF135) 高等学校省级优秀青年人才基金资助重点项目(2013SQRL074ZD)
摘 要:基于用户偏好物品与其在网上浏览的历史记录,推荐系统都能够向用户推荐项目和预测未来的采购意愿,但稀疏性、冷启动等问题影响该方法的推荐效果。为此,提出将深度本体与用户标签结合的Web推荐方法。利用深度本体项目之间的语义关系对数据矩阵降维,根据用户提供的标签信息,将点击流映射到本体中,结合深度本体中项目之间的关系扩展推荐结果,推荐出top-n信息。实验结果表明,与传统的基于本体方法相比,该方法可解决稀疏性和冷启动等问题,同时推荐的准确性和时效性都有较好的效果。