版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Institut für Mathematik Humboldt Universitaet zu Berlin Rudower Chaussee 25 D -12489 Berlin Germany LMAM and School of Mathematical Sciences Peking University Beijing 100871 China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2009年第27卷第2期
页 面:215-236页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:supported by DFG Research Center MATHEON"Mathematics for key technologies" in Berlin supported by the NSFC under Grant 10601003 and A Foundation for the Author of National Excellent Doctoral Dissertation of PR China 200718 support of two Sino-German workshops on Applied and Computational Mathematics held in 2005 and 2007 through the Sino-German office in Beijing
主 题:A posteriori A priori Finite element Hanging node Adaptive algorithm.
摘 要:A unified a posteriori error analysis has been developed in [18, 21-23] to analyze the finite element error a posteriori under a universal roof. This paper contributes to the finite element meshes with hanging nodes which are required for local mesh-refining. The twodimensional 1-irregular triangulations into triangles and parallelograms and their combinations are considered with conforming and nonconforming finite element methods named after or by Courant, Q1, Crouzeix-Raviart, Poisson, Stokes and Navier-Lamé equations Han, Rannacher-Turek, and others for the The paper provides a unified a priori and a posteriori error analysis for triangulations with hanging nodes of degree ≤ 1 which are fundamental for local mesh refinement in self-adaptive finite element discretisations.