咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >HANGING NODES IN THE UNIFYING ... 收藏

HANGING NODES IN THE UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

HANGING NODES IN THE UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

作     者:C. Carstensen Jun Hu 

作者机构:Institut für Mathematik Humboldt Universitaet zu Berlin Rudower Chaussee 25 D -12489 Berlin Germany LMAM and School of Mathematical Sciences Peking University Beijing 100871 China 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:2009年第27卷第2期

页      面:215-236页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:supported by DFG Research Center MATHEON"Mathematics for key technologies" in Berlin supported by the NSFC under Grant 10601003 and A Foundation for the Author of National Excellent Doctoral Dissertation of PR China 200718 support of two Sino-German workshops on Applied and Computational Mathematics held in 2005 and 2007 through the Sino-German office in Beijing 

主  题:A posteriori A priori Finite element Hanging node Adaptive algorithm. 

摘      要:A unified a posteriori error analysis has been developed in [18, 21-23] to analyze the finite element error a posteriori under a universal roof. This paper contributes to the finite element meshes with hanging nodes which are required for local mesh-refining. The twodimensional 1-irregular triangulations into triangles and parallelograms and their combinations are considered with conforming and nonconforming finite element methods named after or by Courant, Q1, Crouzeix-Raviart, Poisson, Stokes and Navier-Lamé equations Han, Rannacher-Turek, and others for the The paper provides a unified a priori and a posteriori error analysis for triangulations with hanging nodes of degree ≤ 1 which are fundamental for local mesh refinement in self-adaptive finite element discretisations.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分