版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Fraunhofer Institute for Production Technology IPT Steinbachstr. 17 Aachen 52074 Germany Laboratory for Machine Tools WZL RWTH Aachen University Steinbachstr. 19 Aachen 52074 Germany
出 版 物:《Procedia CIRP》 (CIRP会议集)
年 卷 期:2020年第93卷
页 面:443-448页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学]
主 题:Predictive Quality Machine Learning Data Science Automated ML AutoML Benchmarking Artificial Intelligence Data Integration Data Preprocessing Hyperparameter Tuning
摘 要:Applications that leverage the benefits of applying machine learning (ML) in production have been successfully realized. A fundamental hurdle to scale ML-based projects is the necessity of expertise from manufacturing and data science. One possible solution lies in automating the ML pipeline: integration, preparation, modeling and model deployment. This paper shows the possibilities and limits of applying AutoML in production, including a benchmarking of available systems. Furthermore, AutoML is compared to manual implementation in a predictive quality use case: AutoML still requires programming knowledge and is outperformed by manual implementation - but sufficient results are available in a shorter timespan.