咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Automated machine learning for... 收藏

Automated machine learning for predictive quality in production

作     者:Jonathan Krauß Bruno Machado Pacheco Hanno Maximilian Zang Robert Heinrich Schmitt 

作者机构:Fraunhofer Institute for Production Technology IPT Steinbachstr. 17 Aachen 52074 Germany Laboratory for Machine Tools WZL RWTH Aachen University Steinbachstr. 19 Aachen 52074 Germany 

出 版 物:《Procedia CIRP》 (CIRP会议集)

年 卷 期:2020年第93卷

页      面:443-448页

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 

主  题:Predictive Quality Machine Learning Data Science Automated ML AutoML Benchmarking Artificial Intelligence Data Integration Data Preprocessing Hyperparameter Tuning 

摘      要:Applications that leverage the benefits of applying machine learning (ML) in production have been successfully realized. A fundamental hurdle to scale ML-based projects is the necessity of expertise from manufacturing and data science. One possible solution lies in automating the ML pipeline: integration, preparation, modeling and model deployment. This paper shows the possibilities and limits of applying AutoML in production, including a benchmarking of available systems. Furthermore, AutoML is compared to manual implementation in a predictive quality use case: AutoML still requires programming knowledge and is outperformed by manual implementation - but sufficient results are available in a shorter timespan.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分