咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Concrete roadway crack segment... 收藏

Concrete roadway crack segmentation using encoder-decoder networks with range images

有范围图象的具体车道裂缝分割使用编码器解码器网络

作     者:Zhou, Shanglian Song, Wei 

作者机构:Univ Alabama Dept Civil Construct & Environm Engn Tuscaloosa AL 35487 USA 

出 版 物:《AUTOMATION IN CONSTRUCTION》 (建造自动化)

年 卷 期:2020年第120卷

页      面:103403-103403页

核心收录:

学科分类:08[工学] 0813[工学-建筑学] 0814[工学-土木工程] 

基  金:Alabama Department of Transportation [930-930, 25663] Alabama Transportation Institute 

主  题:Deep convolutional neural network Encoder-decoder networks Residual connection Range image Crack segmentation Pavement groove 

摘      要:Recently, researchers have utilized DCNN for pixel-wise crack classification through semantic segmentation. Nevertheless, some issues in current DCNN-based roadway crack segmentation are yet to be fully addressed. For example, image pre-processing techniques are often required to eliminate the surface variations in range images, which may bring uncertainties due to subjective parameter selection;besides, disturbances from many non-crack patterns such as pavement grooves can deteriorate the crack segmentation performance, which remains a challenge for current DCNN-based methodologies. This paper proposes a methodology based on encoder-decoder networks to achieve pixel-wise crack classification performance on laser-scanned range images, under the disturbance of surface variations and grooved patterns in concrete pavements. The raw range data is directly applied in this methodology without any pre-processing. A comparative study is performed to determine the optimal architecture layout among twelve proposed candidates. Meanwhile, the influence of residual connections on DCNN performance is investigated and demonstrated.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分