咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Three-dimensional general rela... 收藏

Three-dimensional general relativistic Poynting-Robertson effect. III. Static and nonspherical quadrupolar massive source

作     者:Vittorio De Falco Pavel Bakala Maurizio Falanga 

作者机构:M. R. Štefánik Observatory and Planetarium Sládkovičova 41 920 01 Hlohovec Slovak Republic Research Centre for Computational Physics and Data Processing Faculty of Philosophy & Science Silesian University in Opava Bezručovo nám. 13 CZ-74601 Opava Czech Republic International Space Science Institute Hallerstrasse 6 3012 Bern Switzerland 

出 版 物:《Physical Review D》 (物理学评论D辑:粒子、场、重力与宇宙学)

年 卷 期:2020年第101卷第12期

页      面:124031-124031页

核心收录:

学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学] 

基  金:Silesian University, (SGS/13/2019) Grantová Agentura České Republiky, GA ČR, (GAÄR 17-16287S) 

主  题:General relativity Gravitation Classical black holes Astrophysical electromagnetic fields Numerical simulations in gravitation & astrophysics 

摘      要:We investigate the three-dimensional (3D) motion of a test particle in the gravitational field generated by a nonspherical compact object endowed with a mass quadrupole moment, described by the Erez-Rosen metric, and a radiation field, including the general relativistic Poynting-Robertson (PR) effect, coming from a rigidly rotating spherical emitting source located outside of the compact object. We derive the equations of motion for test particles influenced by such radiation field, recovering the two-dimensional (2D) description, and the weak-field approximation. This dynamical system admits the existence of a critical hypersurface, region where gravitational and radiation forces balance. Selected test particle orbits for different set of input parameters are displayed. The possible configurations on the critical hypersurfaces can be either latitudinal drift toward the equatorial ring or suspended orbits. We discuss about the existence of multiple hypersurface solutions through a simple method to perform the calculations. We graphically prove also that the critical hypersurfaces are stable configurations within the Lyapunov theory.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分