版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Hunan Univ Coll Civil Engn Key Lab Wind & Bridge Engn Hunan Prov Changsha 410082 Hunan Peoples R China Aarhus Univ Dept Engn Aarhus Denmark
出 版 物:《ADVANCES IN STRUCTURAL ENGINEERING》 (结构工程进展)
年 卷 期:2020年第23卷第14期
页 面:3037-3047页
核心收录:
学科分类:08[工学] 081402[工学-结构工程] 081304[工学-建筑技术科学] 0813[工学-建筑学] 0814[工学-土木工程]
基 金:State's Key Project of Research and Development Plan [2016YFE0127900] National Science Foundation of China
主 题:classical flutter flutter speed offshore horizontal axis wind turbines structural damping
摘 要:Classical flutter of wind turbine blades is one of the most destructive instability phenomena of wind turbines especially for several-MW-scale turbines. In the present work, flutter performance of the DTU 10-MW offshore wind turbine is investigated using a 907-degree-of-freedom aero-hydro-servo-elastic wind turbine model. This model involves the couplings between tower, blades and drivetrain vibrations. Furthermore, the three-dimensional aerodynamic effects on wind turbine blade tip have also been considered through the blade element momentum theory with Bak s stall delay model and Shen s tip loss correction model. Numerical simulations have been carried out using data calibrated to the referential DTU 10-MW offshore wind turbine. Comparison of the aeroelastic responses between the onshore and offshore wind turbines is made. Effect of structural damping on the flutter speed of this 10-MW offshore wind turbine is investigated. Results show that the damping in the torsional mode has predominant impact on the flutter limits in comparison with that in the bending mode. Furthermore, for shallow water offshore wind turbines, hydrodynamic loads have small effects on its aeroelastic response.