版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Indian Inst Technol Ind Engn & Operat Res Mumbai 400076 Maharashtra India
出 版 物:《MATHEMATICAL METHODS OF OPERATIONS RESEARCH》 (运筹学研究中的数学方法)
年 卷 期:2020年第92卷第3期
页 面:545-575页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
主 题:Mixed-integer programming Global optimization Convex hull Disjunctive cut Split cut Split-rank
摘 要:We study the facet defining inequalities of the convex hull of a mixed-integer bilinear covering arising in trim-loss (or cutting stock) problem under the framework of disjunctive cuts. We show that all of them can be derived using a disjunctive procedure. Some of these are split cuts of rank one for a convex mixed-integer relaxation of the covering set, while others have rank at least two. For certain linear objective functions, the rank-one split cuts are shown to be sufficient for finding the optimal value over the convex hull of the covering set. A relaxation of the trim-loss problem has this property, and our computational results show that these rank-one inequalities find the lower bound quickly.