版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Open Univ Hong Kong Sch Sci & Technol Hong Kong Peoples R China
出 版 物:《CYBERNETICS AND SYSTEMS》 (控制论与系统)
年 卷 期:2020年第52卷第1期
页 面:73-104页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Evolutionary algorithms multi-objective optimization problem particle swarm optimization
摘 要:In this paper, a modified Competitive Mechanism Multi-Objective Particle Swarm Optimization (MCMOPSO) algorithm is presented for multi-objective optimization. The algorithm consists of an improved leader selection scheme called multi-competition leader selection. Under this scheme, particles move to the winner among the elite particles for the social cognitive by comparing the nearest angle or the farthest angle of several randomly selected elite particles. Besides, as the inertia weight plays an important role in controlling the previous velocity of each particle, the competitive mechanism is applied to the inertia weight in order to investigate for the most suitable balance between the exploration and exploitation abilities of the algorithm during the search process. The experimental results show that the proposed algorithm outperforms four other popular multi-objective particle swarm optimization algorithms most of the time on thirty-seven benchmarks in terms of inverted generational distance. Furthermore, the proposed algorithm is applied to the signalized traffic problem to optimize the effective green time of each phase, and the proposed algorithm performs better than other MOPSO algorithms for the traffic problem in terms of hypervolume.