版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Northeastern Univ Coll Comp Sci & Engn Shenyang 110169 Peoples R China
出 版 物:《IEEE ACCESS》 (IEEE Access)
年 卷 期:2020年第8卷
页 面:203028-203038页
核心收录:
基 金:National Natural Science Foundation of China
主 题:Knowledge graph representation learning capsule network link prediction knowledge graph embedding
摘 要:A Knowledge Graph (KG) is a directed graph with nodes as entities and edges as relations. KG representation learning (KGRL) aims to embed entities and relations in a KG into continuous low-dimensional vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. In this paper, we propose a KG embedding framework, namely MCapsEED (Multi-Scale Capsule-based Embedding Model Incorporating Entity Descriptions). MCapsEED employs a Transformer in combination with a relation attention mechanism to identify the relation-specific part of an entity description and obtain the description representation of an entity. The structured and description representations of an entity are integrated into a synthetic representation. A 3-column matrix with each column a synthetic representation of an element of a triple is fed into a Multi-Scale Capsule-based Embedding model to produce final representations of the head entity, the tail entity and the relation. Experiments show that MCapsEED achieves better performance than state-of-the-art embedding models for the task of link prediction on four benchmark datasets. Our code can be found at https://***/1780041410/McapsEED.