版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:安徽大学计算智能与信号处理教育部重点实验室合肥230601 安徽大学电子信息工程学院合肥230601
出 版 物:《北京邮电大学学报》 (Journal of Beijing University of Posts and Telecommunications)
年 卷 期:2014年第37卷第2期
页 面:23-27页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(61172127) 安徽省自然科学基金项目(1408085MF121)
主 题:无人机 遥感图像 病害松树识别 加权小波支持向量数据描述 多分类
摘 要:针对支持向量数据描述多分类中模糊数据域的误判问题,提出了一种改进的加权小波支持向量数据描述(WWSVDD)多分类方法,并应用于遥感图像病害松树识别.利用无人机搭载双光谱相机获取高分辨率遥感图像,提取地物特征,构建特征向量.用WWSVDD模型描述每类样本,根据待测样本在特征空间中的不同分布,分别采用最小相对距离法和隶属度函数法进行决策分类,从而实现病害松树的识别.实验结果表明,与传统的K近邻和支持向量数据描述多分类方法相比,所提方法在识别病害松树方面准确性更高.