咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >非线性延迟微分方程的两类预估校正算法 收藏
非线性延迟微分方程的两类预估校正算法

非线性延迟微分方程的两类预估校正算法

作     者:李洋 

作者单位:广西师范大学 

学位级别:硕士

导师姓名:肖飞雁

授予年度:2019年

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主      题:非线性延迟微分方程 预估校正算法 稳定性 D-收敛 

摘      要:现实生活中,微分方程与人类社会是密切相关的,人们使用微分方程这一工具建立了很多模型,比如人口发展模型、交通流模型……然而,由于实际问题的变化复杂多样,建立起的微分方程往往结构复杂,要给出解析解是十分困难的,针对这种现象,专家学者采用数值方法来求解微分方程.常用的数值方法分为显式方法和隐式方法两大类,而它们又各有优缺点,显式方法计算过程虽然简便,但是计算产生的误差比较大;隐式方法误差较小,不过计算过程繁琐,实时性较差.于是,专家学者将这两种方法结合起来,先利用显式格式提供一个预估值,再将这个值代入隐式格式中,得到的值称为校正值,这种方法也就是我们所熟知的预估校正算法.预估校正算法兼备显式方法和隐式方法的优点,又弥补了它们的不足,在实际运用中具有很大的价值,但是近二十年来,专家学者数对预估校正算法的研究还是比较少的.本文构造了非线性延迟微分方程一般格式的单支预估校正算法和线性多步预估校正算法,并分别讨论它们的稳定性和收敛性,得到了一般性理论结果,最后通过数值实验进行验证.本文的主要内容有:第一部分,介绍本文相关背景、研究意义以及研究现状.第二部分,给出了本文所研究的问题和相关的稳定性、收敛性结论.第三部分,构造了一般格式的单支预估校正算法,讨论在一定条件,该算法的稳定性和收敛性.证明得出该预估校正算法的稳定性与其子方法稳定性之间的关系,以及预估校正算法收敛阶与其子方法收敛阶的定量关系,并用数值实验验证结果.第四部分,构造了一般格式的线性多步预估校正算法,根据线性多步法与单支方法之间的转化关系,得出线性多步预估校正算法稳定性和收敛性与其子方法稳定性和收敛性的相关结论,并从数值试验的角度进行验证。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分