版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者单位:University of the Western Cape
学位级别:master
导师姓名:Junaid Gamieldien
授予年度:2015年
主 题:Non-coding DNA Gene dysregulation Aberrant methylation Renal cell carcinoma Clear cell renal cell carcinoma
摘 要:Kidney cancers, of which clear cell renal cell carcinoma comprises an estimated 70%, have been placed amongst the top ten most common cancers in both males and females. With a mortality rate that exceeds 40%, kidney cancer is considered the most lethal cancer of the genitourinary system. Despite advances in its treatment, the mortality- and incidence rates across all stages of the disease have continued to climb. Since the release of the Human Genome Project in the early 2000’s, most genetics studies have focused on the protein coding region of the human genome, which accounts for a mere 2% of the entire genome. It has been suggested that diverting our focus to the other 98% of the genome, which was previously dismissed as non-functional “junk DNA, could possibly contribute significantly to our understanding of the underlying mechanisms of complex *** this study a whole genome sequencing somatic mutation data set from the International Cancer Genome Consortium was used. The non-coding somatic mutations within the promoter, intronic, 5-prime untranslated and 3-prime untranslated regions of clear cell renal cell carcinoma-implicated genes were extracted and submitted to RegulomDB for their functional *** expected, most of the variants were located within the intronic regions and only a small subset of identified variants was predicted to be deleterious. Although the variants all belonged to a selected subset of kidney cancer-associated genes, the genes frequently mutated in the non-coding regions were not the same genes that were frequently mutated in the whole exome studies (where the focus is on the coding sequences). This indicates that with whole genome sequencing studies a new set of genes/variants previously unassociated with the clear cell renal cell carcinoma could be identified. In addition, most of the non-coding somatic variants fell within multiple transcriptions factor binding sites. Since many of these variants were also deleterious (a