咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Differential Estimation Of Aud... 收藏
Differential Estimation Of Audiograms Using Gaussian Process...

Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection

利用高斯过程主动模型选择进行听觉图的微分估计

作     者:Trevor Larsen 

作者单位:Washington University in St. Louis 

学位级别:硕士

导师姓名:Professor Dennis Barbour

授予年度:2019年

主      题:Audiogram Machine Learning Gaussian Process Model Selection Bayesian Artificial Intelligence and Robotics Diagnosis Engineering 

摘      要:Classical methods for psychometric function estimation either require excessive resources to perform, as in the method of constants, or produce only a low resolution approximation of the target psychometric function, as in adaptive staircase or up-down procedures. This thesis makes two primary contributions to the estimation of the audiogram, a clinically relevant psychometric function estimated by querying a patient’s for audibility of a collection of tones. First, it covers the implementation of a Gaussian process model for learning an audiogram using another audiogram as a prior belief to speed up the learning procedure. Second, it implements a use case of Bayesian active model selection to determine whether two audiograms differ. Both algorithms were tested using audiometric data from the National Institute for Occupational Safety and Health (NIOSH).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分