版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者单位:New Jersey Institute of Technology
学位级别:硕士
授予年度:2019年
主 题:Deep learning Deep morphological neural network Morphological layer Image morphology Artificial Intelligence and Robotics Other Computer Sciences
摘 要:Mathematical morphology is a theory and technique applied to collect features like geometric and topological structures in digital images. Determining suitable morphological operations and structuring elements for a give purpose is a cumbersome and time-consuming task. In this paper, morphological neural networks are proposed to address this problem. Serving as a non-linear feature extracting layers in deep learning frameworks, the efficiency of the proposed morphological layer is confirmed analytically and empirically. With a known target, a single-filter morphological layer learns the structuring element correctly, and an adaptive layer can automatically select appropriate morphological operations. For high level applications, the proposed morphological neural networks are tested on several classification datasets which are related to shape or geometric image features, and the experimental results have confirmed the tradeoff between high computational efficiency and high accuracy.