由于Y-型聚合物刷把两种不同组分通过同一个接枝点固定于接枝表面,从而抑制了两组分聚合物刷接枝点的组分涨落,因此,在形成高度有序的表面结构方面具有潜在的重要应用。我们采用Monte Carlo 模拟方法,定量研究了接枝点的分布对于Y...
详细信息
由于Y-型聚合物刷把两种不同组分通过同一个接枝点固定于接枝表面,从而抑制了两组分聚合物刷接枝点的组分涨落,因此,在形成高度有序的表面结构方面具有潜在的重要应用。我们采用Monte Carlo 模拟方法,定量研究了接枝点的分布对于Y型聚合物刷在平板表面形成的条状结构有序度的影响,并探讨了通过诱导形成长程有序条状结构的条件和可能性。研究结果表明,即使在接枝点均一规则分布的情况下,只有当接枝表面的横向尺寸小于一定值时,才能形成完美的条状结构。而接枝点不同方式的分布,对于表面结构的有序程度会产生重要影响,主要取决于接枝点密度涨落的大小。而通过在体系中引入均聚物刷,即使在接枝点分布密度涨落较大时,仍然可以在较大尺度上诱导出有序的表面结构。
本文基于以前理论报道的δ-磷结构,对其力学性质进行了深入的讨论。通过理论计算发现,杨氏模量、泊松比和切变模量均呈现出项异性。由于特殊的褶皱结构,δ-磷具有负的泊松比值,使其表现出反常的拉胀效应。在y方向的负泊松比值得到-0.267,这和以前报道的2D拉胀材料相比,δ-磷的的泊松比值最"负"。此外,我们对多层结构的δ-磷结构研究发现,这种拉胀效应仍然能够保持,因为层与层之间是比较弱的van der waals相互作用。这种新奇的力学性质为今后纳米器件的设计提供了新的思路。
We study a basic theoretical model for a deformable vesicle immersed in a solution of particles that can adsorb to one of the two surfaces of a *** model consists of an adsorption energy gain for the adsorbing particl...
详细信息
We study a basic theoretical model for a deformable vesicle immersed in a solution of particles that can adsorb to one of the two surfaces of a *** model consists of an adsorption energy gain for the adsorbing particles and the Canham-Helfrich membrane bending energy,in
It is well known that the addition of nanofillers to polymer materials can lead to markedly enhanced mechanical *** extensive work has been dedicated to studying the low-strain elastic behavior of polymer nanocomposit...
详细信息
It is well known that the addition of nanofillers to polymer materials can lead to markedly enhanced mechanical *** extensive work has been dedicated to studying the low-strain elastic behavior of polymer nanocomposites(PNC),little attention has been paid to the equally important plastic flow regime that constitutes
<正>We give a general formulation of handling the Brownian motion of a rigid particle of arbitrary shape in a Newtonian fluid subject to external force,torque and velocity *** show how to include the effect of the B...
<正>We give a general formulation of handling the Brownian motion of a rigid particle of arbitrary shape in a Newtonian fluid subject to external force,torque and velocity *** show how to include the effect of the Brownian motion in Langevin equation and in Smoluchowskii *** an example,
暂无评论