咨询与建议

限定检索结果

文献类型

  • 23 篇 会议
  • 2 册 图书

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 理学
    • 14 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 16 篇 工学
    • 10 篇 计算机科学与技术...
    • 6 篇 光学工程
    • 5 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 地质资源与地质工...
    • 1 篇 生物工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 variational tech...
  • 2 篇 inverse problems
  • 2 篇 computer communi...
  • 2 篇 signal, image an...
  • 2 篇 machine learning
  • 2 篇 mathematics of c...
  • 2 篇 computer imaging...
  • 1 篇 sampled methods
  • 1 篇 musculoskeletal ...
  • 1 篇 super-resolution
  • 1 篇 eigen-analysis
  • 1 篇 scale-space filt...
  • 1 篇 photointerpretat...
  • 1 篇 medical imaging ...
  • 1 篇 geodesy
  • 1 篇 kaczmarz methods
  • 1 篇 diffusion echoes
  • 1 篇 tikhonov regular...
  • 1 篇 magnetic prospec...
  • 1 篇 iterative method...

机构

  • 2 篇 department of ma...
  • 2 篇 department of ma...
  • 2 篇 university of fe...
  • 2 篇 university of ca...
  • 2 篇 university of pi...
  • 2 篇 university of li...
  • 2 篇 queen mary unive...
  • 2 篇 heriot-watt univ...
  • 1 篇 british columbia...
  • 1 篇 ophthalmology de...
  • 1 篇 research station...
  • 1 篇 department of ma...
  • 1 篇 university of bo...
  • 1 篇 fraunhofer insti...
  • 1 篇 science park 123...
  • 1 篇 ceremade cnrs an...
  • 1 篇 mathematical ima...
  • 1 篇 university of bo...
  • 1 篇 simon fraser uni...
  • 1 篇 department of me...

作者

  • 2 篇 carola-bibiane s...
  • 2 篇 sherry finn m.
  • 2 篇 aujol jean-franç...
  • 2 篇 silvia gazzola
  • 2 篇 girometti laura
  • 2 篇 romina gaburro
  • 2 篇 kostas papafitso...
  • 2 篇 tatiana a. bubba
  • 2 篇 duits remco
  • 2 篇 marcelo pereyra
  • 2 篇 bubba tatiana a.
  • 1 篇 schlindwein fabi...
  • 1 篇 ghyselincks simo...
  • 1 篇 ta vinh-thong
  • 1 篇 gaa daniel
  • 1 篇 van den berg nic...
  • 1 篇 traonmilin yann
  • 1 篇 huber richard
  • 1 篇 drew mark s.
  • 1 篇 kloiber julian

语言

  • 25 篇 英文
检索条件"任意字段=10th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2025"
25 条 记 录,以下是1-10 订阅
排序:
10th international conference on scale space and variational methods in computer vision, ssvm 2025
10th International Conference on Scale Space and Variational...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
the proceedings contain 63 papers. the special focus in this conference is on scale space and variational methods in computer vision. the topics include: Fast Inexact Bilevel Optimization for Analytical Deep Imag...
来源: 评论
10th international conference on scale space and variational methods in computer vision, ssvm 2025
10th International Conference on Scale Space and Variational...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
the proceedings contain 63 papers. the special focus in this conference is on scale space and variational methods in computer vision. the topics include: Fast Inexact Bilevel Optimization for Analytical Deep Imag...
来源: 评论
A variational Method for Curve Extraction  10th
A Variational Method for Curve Extraction
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Arthaud, Majid Chambolle, Antonin Duval, Vincent ENPC 6 Av. Blaise Pascal Champs-sur-Marne77420 France INRIA Mokaplan Paris France CEREMADE CNRS and Université Paris-Dauphine PSL Paris France
We propose a functional for extracting curves between a list of possible endpoints, based on a discretization of a variational energy and Smirnov’s decomposition theorem for vector fields. It is then used t... 详细信息
来源: 评论
Fractional Derivative variational Model for Additive Signal Decomposition  10th
Fractional Derivative Variational Model for Additive Signal...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Girometti, Laura Lanza, Alessandro Morigi, Serena Department of Mathematics University of Bologna Bologna Italy
We present a novel variational model for the additive decomposition of 1D noisy signals. the model relies on sparsifying fractional-order derivatives of the sought-for components to capture intricate signal structures... 详细信息
来源: 评论
Multigrid methods for Total Variation  10th
Multigrid Methods for Total Variation
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Guerra, Felipe Valkonen, Tuomo Quito Ecuador Department of Mathematics Escuela Politécnica Nacional Quito Ecuador Department of Mathematics and Statistics University of Helsinki Helsinki Finland
Based on a nonsmooth coherence condition, we construct and prove the convergence of a forward-backward splitting method that alternates between steps on a fine and a coarse grid. Our focus is on total variation regula... 详细信息
来源: 评论
Real-Time Scene Recovery from Image scale space and Perceptual Hue Similarity  10th
Real-Time Scene Recovery from Image Scale Space and Percep...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: He, Roy Y. Wang, Han City University of Hong Kong Kowloon Tong Hong Kong
Chromatic degradation is often caused by multiple factors that are difficult to retrieve after images have been acquired, making scene recovery a highly ill-posed inverse problem. In this paper, we leverage the nature... 详细信息
来源: 评论
Skeletonisation scale-spaces  10th
Skeletonisation Scale-Spaces
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Gierke, Julia Peter, Pascal Mathematical Image Analysis Group Faculty of Mathematics and Computer Science Campus E1.7 Saarland University Saarbrücken66041 Germany
the medial axis transform is a well-known tool for shape recognition. Instead of the object contour, it equivalently describes a binary object in terms of a skeleton containing all centres of maximal inscribed discs. ... 详细信息
来源: 评论
Parameter-Free Structure-Texture Image Decomposition by Unrolling  10th
Parameter-Free Structure-Texture Image Decomposition by Unr...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Girometti, Laura Aujol, Jean-François Guennec, Antoine Traonmilin, Yann Department of Mathematics University of Bologna Bologna Italy University of Bordeaux Bordeaux INP CNRS IMB UMR 5251 TalenceF-33400 France
In this work, we propose a parameter-free and efficient method to tackle the structure-texture image decomposition problem. In particular, we present a neural network LPR-NET based on the unrolling of the Low Patch Ra... 详细信息
来源: 评论
Inversion of Magnetic Data Using Learned Dictionaries and scale space
Inversion of Magnetic Data Using Learned Dictionaries and ...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Ahamed, Shadab Ghyselincks, Simon Arias, Pablo Chang Huang Kloiber, Julian Ranjbar, Yasin Tang, Jingrong Zakariaei, Niloufar Haber, Eldad Department of Physics and Astronomy University of British Columbia VancouverBC Canada Department of Earth Ocean and Atmospheric Sciences University of British Columbia VancouverBC Canada Department of Mechanical Engineering University of British Columbia VancouverBC Canada
Magnetic data inversion is an important tool in geophysics, used to infer subsurface magnetic susceptibility distributions from surface magnetic field measurements. this inverse problem is inherently ill-posed, charac... 详细信息
来源: 评论
the variational Approach to the Flow of Sobolev-Diffeomorphisms Model  9th
The Variational Approach to the Flow of Sobolev-Diffeomor...
收藏 引用
9th international conference on scale space and variational methods in computer vision, ssvm 2023
作者: Guastini, Mara Rajković, Marko Rumpf, Martin Wirth, Benedikt Institute for Numerical Simulation University of Bonn Endenicher Allee 60 Bonn53115 Germany Applied Mathematics Münster University of Münster Orléans-Ring 10 Münster48149 Germany
the flow of diffeomorphisms, aka LDDMM, is a framework to define a group G of diffeomorphisms of chosen regularity with a Riemannian structure. If these diffeomorphisms are used to deform a template shape or image, th... 详细信息
来源: 评论