咨询与建议

限定检索结果

文献类型

  • 23 篇 会议
  • 2 册 图书

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 理学
    • 14 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 16 篇 工学
    • 10 篇 计算机科学与技术...
    • 6 篇 光学工程
    • 5 篇 电气工程
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 地质资源与地质工...
    • 1 篇 生物工程
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 variational tech...
  • 2 篇 inverse problems
  • 2 篇 computer communi...
  • 2 篇 signal, image an...
  • 2 篇 machine learning
  • 2 篇 mathematics of c...
  • 2 篇 computer imaging...
  • 1 篇 sampled methods
  • 1 篇 musculoskeletal ...
  • 1 篇 super-resolution
  • 1 篇 eigen-analysis
  • 1 篇 scale-space filt...
  • 1 篇 photointerpretat...
  • 1 篇 medical imaging ...
  • 1 篇 geodesy
  • 1 篇 kaczmarz methods
  • 1 篇 diffusion echoes
  • 1 篇 tikhonov regular...
  • 1 篇 magnetic prospec...
  • 1 篇 iterative method...

机构

  • 2 篇 department of ma...
  • 2 篇 department of ma...
  • 2 篇 university of fe...
  • 2 篇 university of ca...
  • 2 篇 university of pi...
  • 2 篇 university of li...
  • 2 篇 queen mary unive...
  • 2 篇 heriot-watt univ...
  • 1 篇 british columbia...
  • 1 篇 ophthalmology de...
  • 1 篇 research station...
  • 1 篇 department of ma...
  • 1 篇 university of bo...
  • 1 篇 fraunhofer insti...
  • 1 篇 science park 123...
  • 1 篇 ceremade cnrs an...
  • 1 篇 mathematical ima...
  • 1 篇 university of bo...
  • 1 篇 simon fraser uni...
  • 1 篇 department of me...

作者

  • 2 篇 carola-bibiane s...
  • 2 篇 sherry finn m.
  • 2 篇 aujol jean-franç...
  • 2 篇 silvia gazzola
  • 2 篇 girometti laura
  • 2 篇 romina gaburro
  • 2 篇 kostas papafitso...
  • 2 篇 tatiana a. bubba
  • 2 篇 duits remco
  • 2 篇 marcelo pereyra
  • 2 篇 bubba tatiana a.
  • 1 篇 schlindwein fabi...
  • 1 篇 ghyselincks simo...
  • 1 篇 ta vinh-thong
  • 1 篇 gaa daniel
  • 1 篇 van den berg nic...
  • 1 篇 traonmilin yann
  • 1 篇 huber richard
  • 1 篇 drew mark s.
  • 1 篇 kloiber julian

语言

  • 25 篇 英文
检索条件"任意字段=10th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2025"
25 条 记 录,以下是11-20 订阅
排序:
Appropriate Order of Regularization in 3D/2D Image Registration  10th
Appropriate Order of Regularization in 3D/2D Image Registr...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Schulz, Pia F. Mannel, Florian Modersitzki, Jan Institute of Mathematics and Image Computing University of Lübeck Lübeck23562 Germany Fraunhofer Institute for Digital Medicine MEVIS Lübeck23562 Germany
this paper pertains to the order of regularization in variational 3D/2D image registration. Such registration problems often occur in image-guided interventions, e.g. in ardiology, neurology, or orthopedics. In order ... 详细信息
来源: 评论
A Novel Interpretation of the Radon Transform’s Ray and Pixel-Driven Discretizations Under Balanced Resolutions  10th
A Novel Interpretation of the Radon Transform’s Ray and ...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Huber, Richard Technical University of Denmark Department of Applied Mathematics and Computer Science Kongens Lyngby2800 Denmark
Tomographic investigations are a central tool in medical applications, allowing doctors to image the interior of patients. the corresponding measurement process is commonly modeled by the Radon transform. In practice,... 详细信息
来源: 评论
Bundle scale spaces and Local Gauge Symmetries for Graph Networks  10th
Bundle Scale Spaces and Local Gauge Symmetries for Graph N...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Cassel, Jonas Schlindwein, Fabio Albers, Peter Schnörr, Christoph Institute for Mathematics Heidelberg University Heidelberg Germany Research Station Geometry and Dynamics Heidelberg University Heidelberg Germany
We introduce a class of processing architectures for node features on a graph, that are equivariant with respect to local actions of a general symmetry group G, i.e. G may act on each feature φv at some node v b... 详细信息
来源: 评论
Diffusion-Shock Filtering on thspace of Positions and Orientations  10th
Diffusion-Shock Filtering on the Space of Positions and ...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Sherry, Finn M. Schaefer, Kristina Duits, Remco CASA & EAISI Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven Netherlands Mathematical Image Analysis Group Department of Mathematics and Computer Science Saarland University E1.7 Saarbrücken66123 Germany
We extend Regularised Diffusion-Shock (RDS) filtering from Euclidean space R2 [26] to the space of positions and orientations M2:=R2×S1. this has numerous advantages, e.g. making it possible to enhance and inpain... 详细信息
来源: 评论
Convergence Analysis of a Proximal Stochastic Denoising Regularization Algorithm  10th
Convergence Analysis of a Proximal Stochastic Denoising Re...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Renaud, Marien Hermant, Julien Papadakis, Nicolas Univ. Bordeaux CNRS INRIA Bordeaux INP IMB UMR 5251 Talence33400 France
Plug-and-Play methods for image restoration are iterative algorithms that solve a variational problem to recover a clean image from a degraded observation. these algorithms are known to be flexible to changes of degra... 详细信息
来源: 评论
Crossing-Preserving Geodesic Tracking on Spherical Images  10th
Crossing-Preserving Geodesic Tracking on Spherical Images
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: van den Berg, Nicky J. Sherry, Finn M. Berendschot, Tos T. J. M. Duits, Remco CASA Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven Netherlands EAISI Eindhoven University of Technology Eindhoven Netherlands Ophthalmology Department Maastricht University Maastricht Netherlands
In image analysis one often encounters spherical images, for instance in retinal imaging. the behavior of the vessels in the retina is an indicator of several diseases. To automate disease diagnosis using retinal imag... 详细信息
来源: 评论
Efficient Representations of the Diffusion Echo
Efficient Representations of the Diffusion Echo
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Gaa, Daniel Weickert, Joachim Farag, Iva Çiçek, Özgün Mathematical Image Analysis Group Faculty of Mathematics and Computer Science Saarland University Campus E1.7 Saarbrücken66041 Germany
Diffusion echoes are a fundamental concept for understanding the behaviour of nonlinear diffusion filters. they describe the accumulated data exchange during a diffusion process and are given by the columns or rows of... 详细信息
来源: 评论
Bi-level Optimization and Implicit Differentiation as a Framework for Optimal Experimental Design in Tomography
Bi-level Optimization and Implicit Differentiation as a F...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Fathi, Hamid Skorikov, Alexander van Leeuwen, Tristan Science Park 123 Amsterdam1098 XG Netherlands Mathematical Institute Utrecht University Budapestlaan 6 Utrecht3584 CD Netherlands
Total Variation (TV) regularized reconstruction is one of the most relevant methods to improve the quality of limited-angle tomographic reconstructions. Nevertheless, the accuracy of computed tomography (CT) reconstru... 详细信息
来源: 评论
Fast Inexact Bilevel Optimization for Analytical Deep Image Priors  10th
Fast Inexact Bilevel Optimization for Analytical Deep Image...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Salehi, Mohammad Sadegh Bubba, Tatiana A. Korolev, Yury Department of Mathematical Sciences University of Bath BathBA27AY United Kingdom Department of Mathematics and Computer Science University of Ferrara Ferrara Italy
the analytical deep image prior (ADP) introduced by Dittmer et al. (2020) establishes a link between deep image priors and classical regularization theory via bilevel optimization. While this is an elegant constr... 详细信息
来源: 评论
TomoSelfDEQ: Self-supervised Deep Equilibrium Learning for Sparse-Angle CT Reconstruction
TomoSelfDEQ: Self-supervised Deep Equilibrium Learning for ...
收藏 引用
10th international conference on scale space and variational methods in computer vision, ssvm 2025
作者: Bubba, Tatiana A. Santacesaria, Matteo Sebastiani, Andrea Department of Mathematics and Computer Science University of Ferrara Ferrara Italy MaLGa Center Department of Mathematics University of Genoa Genoa Italy Department of Physics Computer Science and Mathematics University of Modena and Reggio Emilia Modena Italy
Deep learning has emerged as a powerful tool for solving inverse problems in imaging, including computed tomography (CT). However, most approaches require paired training data with ground truth images, which can be di... 详细信息
来源: 评论