咨询与建议

限定检索结果

文献类型

  • 7,033 篇 会议
  • 48 篇 期刊文献
  • 39 册 图书

馆藏范围

  • 7,120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,888 篇 工学
    • 4,081 篇 计算机科学与技术...
    • 2,508 篇 软件工程
    • 1,041 篇 信息与通信工程
    • 787 篇 控制科学与工程
    • 662 篇 生物工程
    • 632 篇 电气工程
    • 423 篇 生物医学工程(可授...
    • 284 篇 交通运输工程
    • 280 篇 机械工程
    • 225 篇 仪器科学与技术
    • 224 篇 安全科学与工程
    • 205 篇 建筑学
    • 195 篇 动力工程及工程热...
    • 183 篇 光学工程
    • 166 篇 化学工程与技术
    • 153 篇 土木工程
  • 1,886 篇 理学
    • 1,057 篇 数学
    • 717 篇 生物学
    • 440 篇 统计学(可授理学、...
    • 280 篇 物理学
    • 252 篇 系统科学
    • 140 篇 化学
  • 1,142 篇 管理学
    • 651 篇 管理科学与工程(可...
    • 577 篇 图书情报与档案管...
    • 313 篇 工商管理
  • 405 篇 医学
    • 351 篇 临床医学
    • 295 篇 基础医学(可授医学...
    • 188 篇 药学(可授医学、理...
  • 242 篇 教育学
    • 241 篇 教育学
  • 209 篇 法学
    • 195 篇 社会学
  • 119 篇 农学
  • 110 篇 经济学
  • 50 篇 文学
  • 7 篇 艺术学
  • 5 篇 军事学

主题

  • 555 篇 machine learning
  • 452 篇 deep learning
  • 264 篇 training
  • 253 篇 data mining
  • 234 篇 data models
  • 219 篇 feature extracti...
  • 214 篇 accuracy
  • 183 篇 support vector m...
  • 178 篇 predictive model...
  • 138 篇 neural networks
  • 136 篇 machine learning...
  • 130 篇 computational mo...
  • 120 篇 reinforcement le...
  • 107 篇 convolutional ne...
  • 102 篇 real-time system...
  • 92 篇 forecasting
  • 90 篇 learning systems
  • 90 篇 artificial intel...
  • 87 篇 transfer learnin...
  • 86 篇 big data

机构

  • 69 篇 chitkara univers...
  • 17 篇 school of electr...
  • 15 篇 computer science...
  • 14 篇 harbin engineeri...
  • 13 篇 graphic era hill...
  • 12 篇 building civil a...
  • 12 篇 uttaranchal inst...
  • 12 篇 computer science...
  • 11 篇 university of ch...
  • 10 篇 school of electr...
  • 10 篇 school of comput...
  • 10 篇 graphic era deem...
  • 10 篇 school of electr...
  • 10 篇 yonsei univ dept...
  • 9 篇 wuhan university...
  • 9 篇 univ chinese aca...
  • 8 篇 school of remote...
  • 8 篇 school of inform...
  • 7 篇 university of sa...
  • 7 篇 microsoft resear...

作者

  • 17 篇 kukreja vinay
  • 15 篇 vinay kukreja
  • 13 篇 yin hujun
  • 12 篇 liu yang
  • 12 篇 corchado emilio
  • 11 篇 mehta shiva
  • 10 篇 shiva mehta
  • 10 篇 hujun yin
  • 10 篇 cho sung-bae
  • 9 篇 notsu akira
  • 9 篇 silva catarina
  • 9 篇 alhajj reda
  • 7 篇 ksieniewicz pawe...
  • 7 篇 hammer barbara
  • 7 篇 zhang byoung-tak
  • 7 篇 wozniak michal
  • 7 篇 hussain abir
  • 7 篇 soubra hassan
  • 7 篇 huang de-shuang
  • 7 篇 camacho david

语言

  • 6,938 篇 英文
  • 171 篇 其他
  • 15 篇 中文
  • 1 篇 西班牙文
  • 1 篇 俄文
检索条件"任意字段=11th International Conference on Intelligent Data Engineering and Automated Learning"
7120 条 记 录,以下是51-60 订阅
排序:
A Deep-learning Approach for the Identification of New Subtypes of Lung Cancer  25th
A Deep-Learning Approach for the Identification of New Subty...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Banerjee, Tuhin Corradini, Andrea Canon EMEA Amstelveen Netherlands MCI Innsbruck Austria
Lung cancer is the deadliest cancer in the world. It is caused by unchecked cell division of damaged cells in the lungs forming tumors that eventually prevent the lung from functioning properly. Identification of nove... 详细信息
来源: 评论
MetaLIRS: Meta-learning for Imputation and Regression Selection  25th
MetaLIRS: Meta-learning for Imputation and Regression Select...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Erez, Ill Baysal Flokstra, Jan Pod, Mannes van Keulen, Maurice Univ Twente EEMCS NL-7500 AE Enschede Netherlands
Missing data is a prevalent problem in data science for many fields such as natural, social, and health sciences. Since most regression methods can not handle missing data directly, imputation methods are used in data... 详细信息
来源: 评论
Predicting Employee Attrition in a Multi-company Setting  25th
Predicting Employee Attrition in a Multi-company Setting
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Gomes, Adriano Silva, Luis M. Cruz, Joao Pedro Univ Aveiro Dept Econ Management Ind Engn & Tourism P-3810193 Aveiro Portugal Univ Aveiro Ctr Res & Dev Math & Applicat CIDMA Dept Math P-3810193 Aveiro Portugal
this paper describes the creation of a database and a machine learning model to predict employee attrition. Our proposal deals with attrition by considering 3 classes (voluntary, involuntary and no attritors) giving a... 详细信息
来源: 评论
A Comprehensive Digital Solution for Identifying and Addressing Academic Risk in Middle Education  25th
A Comprehensive Digital Solution for Identifying and Address...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Magalhaes, Renata Duraes, Dalila Costa, Antonio Machado, Jose Novais, Paulo Univ Minho Algoritmi Ctr LASI Braga Portugal
Smart schooling seeks to enhance the educational experience through technology. In this effort, a digital educational platform has been developed and empirically tested to identify students at risk of academic failure... 详细信息
来源: 评论
Noise Tolerance and Robustness Ranking in Machine learning Models  25th
Noise Tolerance and Robustness Ranking in Machine Learning M...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Padro-Ferragut, Cristina Ramirez-Quintana, Maria Jose Martinez-Plumed, Fernando Univ Politecn Valencia Valencia Spain
Machine learning models often excel in controlled environments but may struggle with noisy, incomplete, or shifted real-world data. Ensuring that these models maintain high performance despite these imperfections is c... 详细信息
来源: 评论
data Analysis and Anomaly Detection in a Wind Farm with k-Nearest Neighbors  25th
Data Analysis and Anomaly Detection in a Wind Farm with k-Ne...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Weiss, Bassel Esteban, Segundo Santos, Matilde Univ Complutense Madrid Dpto Arquitectura Computadores Automat Madrid 28040 Spain UCM Inst Knowledge Technol Madrid 28040 Spain
this paper presents an in-depth analysis of data from the Alpha Ventus offshore wind farm, emphasizing the identification and detection of anomalies in wind turbine performance. Utilizing real-world data from the RAVE... 详细信息
来源: 评论
Federated learning with Discriminative Naive Bayes Classifier  25th
Federated Learning with Discriminative Naive Bayes Classifie...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Torrijos, Pablo Alfaro, Juan C. Gamez, Jose A. Puerta, Jose M. Univ Castilla La Mancha Inst Invest Informat Albacete Albacete 02071 Spain Univ Castilla La Mancha Dept Sistemas Informaticos Albacete 02071 Spain
Federated learning has emerged as a promising approach to train machine learning models on decentralized data sources while preserving data privacy. this paper proposes a new federated approach for Naive Bayes (NB) cl... 详细信息
来源: 评论
Using data Augmentation for Improving Text Summarization  25th
Using Data Augmentation for Improving Text Summarization
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Constantin, Daniel Mihaescu, Marian Cristian Heras, Stella Jordan, Jaume Palanca, Javier Julian, Vicente Univ Craiova Craiova Romania VRAIN Univ Politecn Valencia Valencian Res Inst Artificial Intelligence Valencia Spain
In today's society, the amount of information we need to process daily from sources such as news, videos, and literature is relatively high. the primary strategy to decrease the workload is to use effective summar... 详细信息
来源: 评论
Assessing the Impact of Temporal data Aggregation on the Reliability of Predictive Machine learning Models  25th
Assessing the Impact of Temporal Data Aggregation on the Rel...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Barhrhouj, Ayah Ananou, Bouchra Ouladsine, Mustapha Aix Marseille Univ Univ Toulon CNRS LIS UMR 7020 Marseille France
In time series analysis, data aggregation is an essential preprocessing step that consolidates data points over specified time intervals, simplifying the data structure and reducing noise. this process is vital for en... 详细信息
来源: 评论
Counterfactual Explanations for Sustainable Tourism Indicators  25th
Counterfactual Explanations for Sustainable Tourism Indicato...
收藏 引用
25th international conference on intelligent data engineering and automated learning
作者: Saugar, Javier Lancho, Carmen Cuesta, Marina Cano, Emilio L. Martin de Diego, Isaac Amado, Antonio Rey Juan Carlos Univ Data Sci Lab C Tulipan S-N Mostoles 28933 Spain Dephimatica SL C Rios Rosas 44 3 C Madrid 28002 Spain
Counterfactual explanations are a well-known technique in Explainable Machine learning (XML) to provide simple explanations on complex Machine learning (ML) models. through understandable "what if" scenarios... 详细信息
来源: 评论