咨询与建议

限定检索结果

文献类型

  • 21 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 14 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 5 篇 理学
    • 3 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...

主题

  • 2 篇 target tracking
  • 2 篇 adaptive kernel ...
  • 1 篇 sensor systems
  • 1 篇 variational infe...
  • 1 篇 hierarchical off...
  • 1 篇 active sensing
  • 1 篇 compressed sensi...
  • 1 篇 optical imaging
  • 1 篇 source-term esti...
  • 1 篇 deep learning
  • 1 篇 atmospheric disp...
  • 1 篇 simulation
  • 1 篇 average consensu...
  • 1 篇 software algorit...
  • 1 篇 marine vehicles
  • 1 篇 research and dev...
  • 1 篇 signal processin...
  • 1 篇 sensor data fusi...
  • 1 篇 self-supervised ...
  • 1 篇 phase-aware

机构

  • 2 篇 univ strathclyde...
  • 2 篇 univ edinburgh i...
  • 2 篇 univ sheffield d...
  • 2 篇 univ surrey ctr ...
  • 2 篇 state grid jiang...
  • 1 篇 btae mam tubitak...
  • 1 篇 ece dept. nation...
  • 1 篇 norwegian defenc...
  • 1 篇 univ surrey ctr ...
  • 1 篇 shaanxi normal u...
  • 1 篇 xlim institute u...
  • 1 篇 univ oxford big ...
  • 1 篇 univ surrey inst...
  • 1 篇 univ cambridge d...
  • 1 篇 naiobee company ...
  • 1 篇 adas dept. conti...
  • 1 篇 univ manchester ...
  • 1 篇 sri venkateswara...
  • 1 篇 university of ap...
  • 1 篇 ece dept sri ven...

作者

  • 3 篇 wang wenwu
  • 2 篇 hopgood james r.
  • 2 篇 davies mike e.
  • 2 篇 mihaylova lyudmi...
  • 2 篇 soleymani seyed ...
  • 2 篇 proudler ian k.
  • 2 篇 sun mengwei
  • 2 篇 liu xingchi
  • 1 篇 hu liang
  • 1 篇 sun yang
  • 1 篇 sreenivasulu red...
  • 1 篇 zhang lei
  • 1 篇 negrier romain
  • 1 篇 chen wen-hua
  • 1 篇 liang shuang
  • 1 篇 kersey a.d.
  • 1 篇 b gopala swamy
  • 1 篇 pathipati srihar...
  • 1 篇 pran k.
  • 1 篇 lamb r. a.

语言

  • 20 篇 英文
  • 1 篇 土耳其文
检索条件"任意字段=12th Sensor Signal Processing for Defence Conference, SSPD 2023"
21 条 记 录,以下是1-10 订阅
排序:
2023 sensor signal processing for defence conference, sspd 2023
2023 Sensor Signal Processing for Defence Conference, SSPD 2...
收藏 引用
12th sensor signal processing for defence conference, sspd 2023
the proceedings contain 20 papers. the topics discussed include: association based feedback aided underwater passive target tracking;implementation of adaptive kernel Kalman filter in stone soup;simulation of anisopla...
来源: 评论
Consensus-based Distributed Variational Multi-object Tracker in Multi-sensor Network  12
Consensus-based Distributed Variational Multi-object Tracker...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Li, Qing Gan, Runze Godsill, Simon Univ Cambridge Dept Engn Cambridge England
the growing need for accurate and reliable tracking systems has driven significant progress in sensor fusion and object tracking techniques. In this paper, we design two variational Bayesian trackers that effectively ... 详细信息
来源: 评论
Multi-Target Tracking Using a Swarm of UAVs by Q-learning Algorithm  12
Multi-Target Tracking Using a Swarm of UAVs by Q-learning Al...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Soleymani, Seyed Ahmad Goudarzi, Shidrokh Liu, Xingchi Mihaylova, Lyudmila Wang, Wenwu Xiao, Pei Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Guildford Surrey England Univ West London Sch Comp & Engn London England Univ Sheffield Dept Automat Control & Syst Engn Sheffield S Yorkshire England Univ Surrey Inst Commun Syst 5GIC Guildford Surrey England
this paper proposes a scheme for multiple un-manned aerial vehicles (UAVs) to track multiple targets in challenging 3-D environments while avoiding obstacle collisions. the scheme relies on Received-signal-Strength-In... 详细信息
来源: 评论
Simulation of Anisoplanatic Turbulence for Images and Videos  12
Simulation of Anisoplanatic Turbulence for Images and Videos
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Vint, D. Di Caterina, G. Kirkland, P. Lamb, R. A. Humphreys, D. Univ Strathclyde Ctr Signal & Image Proc Glasgow Lanark Scotland Leonardo UK Ltd Div Elect Airborne & Space Syst Div Edinburgh Midlothian Scotland
Turbulence is a common phenomenon in the atmosphere and can generate a variety of distortions in an image. this can cause further image processing tasks to struggle due to lack of detail in the resulting turbulence af... 详细信息
来源: 评论
Implementation of Adaptive Kernel Kalman Filter in Stone Soup  12
Implementation of Adaptive Kernel Kalman Filter in Stone Sou...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Wright, James S. Hopgood, James R. Davies, Mike E. Proudler, Ian K. Sun, Mengwei Univ Edinburgh Inst Digital Commun Edinburgh EH9 3FG Midlothian Scotland Dstl Dstl Porton Down Bldg 5Rm 101 Salisbury SP4 0JQ Wilts England Univ Strathclyde Dept Elect & Elect Engn Ctr Signal & Image Proc CeSIP Glasgow G1 1XW Lanark Scotland
the recently proposed adaptive kernel Kalman filter (AKKF) is an efficient method for highly nonlinear and high-dimensional tracking or estimation problems. Compared to other nonlinear Kalman filters (KFs), the AKKF h... 详细信息
来源: 评论
Joint sensor Scheduling and Target Tracking with Efficient Bayesian Optimisation  12
Joint Sensor Scheduling and Target Tracking with Efficient B...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Liu, Xingchi Lyu, Chenyi Soleymani, Seyed Ahmad Wang, Wenwu Mihaylova, Lyudmila Univ Sheffield Dept Automat Control & Syst Engn Sheffield S Yorkshire England Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Guildford Surrey England
the received signal strength measurement has been widely used in search and tracking applications and its benefit is linked with the distance between the transmitter and receiver. this paper proposes an online Bayesia... 详细信息
来源: 评论
Adaptive Kernel Kalman Filter for Magnetic Anomaly Detection-based Metallic Target Tracking  12
Adaptive Kernel Kalman Filter for Magnetic Anomaly Detection...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Sun, Mengwei Hodgskin-Brown, Richard Davies, Mike E. Proudler, Ian K. Hopgood, James R. Univ Edinburgh Inst Digital Commun Edinburgh EH9 3FG Midlothian Scotland Univ Strathclyde Dept Elect & Elect Engn Ctr Signal & Image Proc CeSIP Glasgow G1 1XW Lanark Scotland Univ Manchester Dept Elect & Elect Engn Electromagnet Sensing Grp Manchester M13 9PL Lancs England
this paper proposes the use of the adaptive kernel Kalman filter (AKKF) to track metallic targets using magnetic anomaly detection (MAD). the proposed AKKF-based approach enables accurate tracking of moving metallic t... 详细信息
来源: 评论
JOINT LEARNING WIth SHARED LATENT SPACE FOR SELF-SUPERVISED MONAURAL SPEECH ENHANCEMENT  12
JOINT LEARNING WITH SHARED LATENT SPACE FOR SELF-SUPERVISED ...
收藏 引用
12th sensor signal processing for defence conference (sspd)
作者: Li, Yi Sun, Yang Wang, Wenwu Naqvi, Syed Mohsen Newcastle Univ Intelligent Sensing & Commun Res Grp Newcastle Upon Tyne Tyne & Wear England Univ Oxford Big Data Inst Oxford England Univ Surrey Ctr Vis Speech & Signal Proc Guildford Surrey England
Supervised learning has been used to solve monaural speech enhancement problem, offering state-of-the-art performance. However, clean training data is difficult or expensive to obtain in real room environments, which ... 详细信息
来源: 评论
Multisensor fusion for compiling battlespace tactical picture
Multisensor fusion for compiling battlespace tactical pictur...
收藏 引用
IEEE 12th signal processing and Communications Applications conference
作者: Sari, F Sari, N BTAE MAM Tubitak TR-41470 Gebze Kocaeli Turkey
this paper presents a modeling and simulation approach for a multisensor data fusion system to obtain a common tactical picture in defence survelliance applications. We explore an architecture for building a more accu... 详细信息
来源: 评论
Bayesian Estimation of A Periodically-Releasing Biochemical Source Using sensor Networks  12
Bayesian Estimation of A Periodically-Releasing Biochemical ...
收藏 引用
UKACC 12th International conference on Control (CONTROL)
作者: Hu, Liang Su, Jinya Hutchinson, Michael Liu, Cunjia Chen, Wen-Hua De Montfort Univ Sch Comp Sci & Informat Leicester Leics England Loughborough Univ Dept Aeronaut & Automot Engn Loughborough Leics England
this paper develops a Bayesian estimation method to estimate source parameters of a biochemical source using a network of sensors. Based on existing models of continuous and instantaneous releases, a model of discrete... 详细信息
来源: 评论