咨询与建议

限定检索结果

文献类型

  • 716 篇 会议

馆藏范围

  • 716 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 186 篇 计算机科学与技术...
    • 180 篇 控制科学与工程
    • 168 篇 软件工程
    • 46 篇 机械工程
    • 41 篇 电气工程
    • 29 篇 信息与通信工程
    • 26 篇 交通运输工程
    • 21 篇 生物医学工程(可授...
    • 16 篇 电子科学与技术(可...
    • 16 篇 航空宇航科学与技...
    • 14 篇 光学工程
    • 13 篇 石油与天然气工程
    • 11 篇 安全科学与工程
    • 10 篇 动力工程及工程热...
    • 10 篇 土木工程
    • 10 篇 船舶与海洋工程
    • 10 篇 生物工程
    • 9 篇 仪器科学与技术
    • 9 篇 建筑学
    • 9 篇 化学工程与技术
  • 148 篇 理学
    • 83 篇 数学
    • 57 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 11 篇 生物学
  • 28 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 4 篇 经济学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 法学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 179 篇 learning systems
  • 83 篇 control systems
  • 67 篇 accuracy
  • 59 篇 simulation
  • 53 篇 adaptation model...
  • 50 篇 predictive model...
  • 48 篇 data models
  • 40 篇 training
  • 36 篇 process control
  • 34 篇 stability analys...
  • 34 篇 heuristic algori...
  • 32 篇 uncertainty
  • 29 篇 neural networks
  • 29 篇 numerical simula...
  • 29 篇 feature extracti...
  • 28 篇 observers
  • 26 篇 adaptive systems
  • 25 篇 reinforcement le...
  • 24 篇 noise
  • 22 篇 deep learning

机构

  • 24 篇 school of electr...
  • 14 篇 school of mathem...
  • 12 篇 school of electr...
  • 12 篇 school of automa...
  • 11 篇 faculty of infor...
  • 9 篇 college of contr...
  • 9 篇 kunming universi...
  • 9 篇 college of contr...
  • 8 篇 college of artif...
  • 8 篇 school of artifi...
  • 8 篇 college of artif...
  • 8 篇 faculty of mecha...
  • 8 篇 beijing key labo...
  • 8 篇 yunnan key labor...
  • 8 篇 school of electr...
  • 7 篇 school of automa...
  • 7 篇 college of infor...
  • 7 篇 state key labora...
  • 6 篇 school of electr...
  • 6 篇 school of automa...

作者

  • 18 篇 wang li
  • 18 篇 li wang
  • 11 篇 deqing huang
  • 11 篇 ji honghai
  • 11 篇 liu shida
  • 11 篇 shida liu
  • 11 篇 honghai ji
  • 10 篇 huang deqing
  • 8 篇 darong huang
  • 7 篇 xiaoli li
  • 6 篇 kang wang
  • 6 篇 feng li
  • 6 篇 song zhihuan
  • 6 篇 ruikun zhang
  • 6 篇 zhou zhou
  • 5 篇 ye ren
  • 5 篇 fan lingling
  • 5 篇 liu yang
  • 5 篇 ren ye
  • 5 篇 zengqiang chen

语言

  • 632 篇 英文
  • 84 篇 其他
检索条件"任意字段=13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024"
716 条 记 录,以下是171-180 订阅
排序:
Automatic Extraction Technology of Ionospheric Vertical data with Handwritten Font  13
Automatic Extraction Technology of Ionospheric Vertical Data...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Su, Guichang Zhang, Ruikun Liu, Xiangpeng School of Mathematics and Physics Qingdao University of Science and Technology Qingdao266061 China
To solve the problems such as large size, dense text area and various handwriting styles, an automatic data extraction technology based on DB and CRNN algorithms is proposed, which mainly includes four modules: image ... 详细信息
来源: 评论
Compound Disturbance Rejection control for Nanopositioning Using a Phase-Locking Loop Observer  9
Compound Disturbance Rejection Control for Nanopositioning U...
收藏 引用
9th ieee data driven control and learning systems conference (ddcls)
作者: Wei, Wei Xia, Pengfei Liu, Zaiwen Zuo, Min Beijing Technol & Business Univ Sch Comp & Informat Engn Beijing 100048 Peoples R China
In nano-positioning, accuracy and speed are important issues to guarantee the system performance. Integral resonant control (IRC) is able to improve the bandwidth, and phase-locking loop observer (PLLO) based active d... 详细信息
来源: 评论
Predefined-Time Adaptive control for Multiagent systems with Asymmetric Input Amplitude and Rate Saturations  13
Predefined-Time Adaptive Control for Multiagent Systems with...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Zeng, Binbin Yao, Minghai Zhang, Linchuang Pan, Yingnan College of Information Science and Technology Bohai University Jinzhou121013 China College of Control Science and Engineering Bohai University Jinzhou121013 China
In this paper, the adaptive predefined-time control issue is studied for multiagent systems subjected to asymmetric input amplitude and rate saturations. Firstly, a quadratic-fraction controller is designed to directl... 详细信息
来源: 评论
Tumor Cell Small Object Detection Algorithm Based on Improved YOLOv5  13
Tumor Cell Small Object Detection Algorithm Based on Improve...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Cong, Weiqi Sun, Junqing Sun, Hao School of Computer Science and Engineering Tianjin University of Technology Tianjin300384 China College of Artificial Intelligence Nankai University Tianjin300350 China
Deep learning methods are widely used in the task of detecting tumor cells. However, due to the small tumor cells and the presence of impurity interference, it results in the inability to meet the accuracy requirement... 详细信息
来源: 评论
the Pareto Optimal control of Bilinear Stochastic systems  13
The Pareto Optimal Control of Bilinear Stochastic Systems
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Wang, Yanshuang Jiang, Xiushan Zhao, Dongya Zhang, Weihai Qingdao266580 China College of Information and Electrical Engineering Shandong University of Science and Technology Qingdao266590 China
In complex industrial big-data systems, bilinear stochastic systems have the ability to provide accurate industrial process modeling, precise control, optimization and decision support. Bilinear stochastic systems can... 详细信息
来源: 评论
Application-Oriented State-of-Charge Estimation of Lithium-ion Batteries Based on Appropriate Modeling and EKF  13
Application-Oriented State-of-Charge Estimation of Lithium-i...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Luo, Chang Li, Yan Yang, Tong You, Jin Xu, Huiqin School of Control Science and Engineering Shandong University Jinan250061 China
the state of charge (SOC) estimation is essential for battery management systems (BMS), necessitating proper modeling and filtering approaches. this study zeroes in on enhancing the accuracy of SOC estimation of batte... 详细信息
来源: 评论
Fixed- Time Adaptive Neural Pitch Angle control for Variable-Speed Wind Turbines  13
Fixed- Time Adaptive Neural Pitch Angle Control for Variable...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Xie, Shuzong Yang, Qinmin Li, Qingyi Wang, Shaodong Yang, Jun College of Control Science and Engineering Zhejiang University State Key Laboratory of Industrial Control Technology Hangzhou310027 China Zhejiang Provincial Energy Group Company Ltd. Jiaxing314000 China
this paper mainly focuses on the challenging problem of fixed-time adaptive neural pitch angle control for variable-speed wind turbines. Firstly, a switching continuous fixed-time sliding mode variable is adopted to a... 详细信息
来源: 评论
Performance Evaluation and Order Selection for Pattern Modeling Methods through Granger Causality Analysis  13
Performance Evaluation and Order Selection for Pattern Model...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Zhu, Shaotong Zheng, Niannian Luan, Xiaoli Liu, Fei Jiangnan University Wuxi214028 China Wuxi214122 China
In the realm of processes modeling and control, the monitoring of processes is crucial for ensuring safety, and a key task in multivariate statistical process monitoring is to extract the operating patterns of the pro... 详细信息
来源: 评论
Event Triggered control of Ship Automatic Berthing Based on Network Attack  13
Event Triggered Control of Ship Automatic Berthing Based on ...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Liu, Xin Zhang, Qiang Wang, QiWen Xue, GuoQing Xu, Bo School of Navigation of Shipping Shandong Jiaotong University Weihai264209 China Shandong Port Group Co. Ltd Qing Dao266000 China Qingdao Pilot Station 266000 China
this article proposes an adaptive neural network event triggered control scheme based on virtual parameter learning for ship automatic berthing control under false data injection (FDI) attack environment, which is sim... 详细信息
来源: 评论
Pruning-Based Knowledge Transfer Method for Power System Scheduling  13
Pruning-Based Knowledge Transfer Method for Power System Sch...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Yan, Zhen Tang, Hao Fang, Daohong Tan, Qi Wang, Song Wang, Tongwen School of Electrical Engineering and Automation Hefei University of Technology China State Grid Anhui Electric Power Co. Ltd China
In order to enhance the learning optimization efficiency of deep reinforcement learning algorithms in the scenario of unit shutdown and maintenance, this study delves into knowledge transfer issues arising from the re... 详细信息
来源: 评论