咨询与建议

限定检索结果

文献类型

  • 716 篇 会议

馆藏范围

  • 716 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 186 篇 计算机科学与技术...
    • 180 篇 控制科学与工程
    • 168 篇 软件工程
    • 46 篇 机械工程
    • 41 篇 电气工程
    • 29 篇 信息与通信工程
    • 26 篇 交通运输工程
    • 21 篇 生物医学工程(可授...
    • 16 篇 电子科学与技术(可...
    • 16 篇 航空宇航科学与技...
    • 14 篇 光学工程
    • 13 篇 石油与天然气工程
    • 11 篇 安全科学与工程
    • 10 篇 动力工程及工程热...
    • 10 篇 土木工程
    • 10 篇 船舶与海洋工程
    • 10 篇 生物工程
    • 9 篇 仪器科学与技术
    • 9 篇 建筑学
    • 9 篇 化学工程与技术
  • 148 篇 理学
    • 83 篇 数学
    • 57 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 11 篇 生物学
  • 28 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 4 篇 经济学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 法学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 179 篇 learning systems
  • 83 篇 control systems
  • 67 篇 accuracy
  • 59 篇 simulation
  • 53 篇 adaptation model...
  • 50 篇 predictive model...
  • 48 篇 data models
  • 40 篇 training
  • 36 篇 process control
  • 34 篇 stability analys...
  • 34 篇 heuristic algori...
  • 32 篇 uncertainty
  • 29 篇 neural networks
  • 29 篇 numerical simula...
  • 29 篇 feature extracti...
  • 28 篇 observers
  • 26 篇 adaptive systems
  • 25 篇 reinforcement le...
  • 24 篇 noise
  • 22 篇 deep learning

机构

  • 24 篇 school of electr...
  • 14 篇 school of mathem...
  • 12 篇 school of electr...
  • 12 篇 school of automa...
  • 11 篇 faculty of infor...
  • 9 篇 college of contr...
  • 9 篇 kunming universi...
  • 9 篇 college of contr...
  • 8 篇 college of artif...
  • 8 篇 school of artifi...
  • 8 篇 college of artif...
  • 8 篇 faculty of mecha...
  • 8 篇 beijing key labo...
  • 8 篇 yunnan key labor...
  • 8 篇 school of electr...
  • 7 篇 school of automa...
  • 7 篇 college of infor...
  • 7 篇 state key labora...
  • 6 篇 school of electr...
  • 6 篇 school of automa...

作者

  • 18 篇 wang li
  • 18 篇 li wang
  • 11 篇 deqing huang
  • 11 篇 ji honghai
  • 11 篇 liu shida
  • 11 篇 shida liu
  • 11 篇 honghai ji
  • 10 篇 huang deqing
  • 8 篇 darong huang
  • 7 篇 xiaoli li
  • 6 篇 kang wang
  • 6 篇 feng li
  • 6 篇 song zhihuan
  • 6 篇 ruikun zhang
  • 6 篇 zhou zhou
  • 5 篇 ye ren
  • 5 篇 fan lingling
  • 5 篇 liu yang
  • 5 篇 ren ye
  • 5 篇 zengqiang chen

语言

  • 632 篇 英文
  • 84 篇 其他
检索条件"任意字段=13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024"
716 条 记 录,以下是331-340 订阅
排序:
Opportunities of Gen AI in the Banking Industry with regards to the AI Act, GDPR, data Act and DORA  13
Opportunities of Gen AI in the Banking Industry with regards...
收藏 引用
13th Mediterranean conference on Embedded Computing (MECO)
作者: Botunac, Ive Parlov, Natalija Bosna, Jurica Univ Rijeka Fac Informat & Digital Technol Rijeka Croatia Univ Zadar Zadar Croatia APICURA Zagreb Croatia Univ Zadar Dept Econ Zadar Croatia
Generative Artificial Intelligence (Gen AI) stands at the forefront of the banking sector's technological revolution, promising enhancements in decision-making, risk management, and customer interaction. this pape... 详细信息
来源: 评论
Gaussian Reinforcement learning: Optimal Tracking control for Uncertain Linear systems
Gaussian Reinforcement Learning: Optimal Tracking Control fo...
收藏 引用
data driven control and learning systems (ddcls)
作者: Yiqing Gang Jinna Li School of Information and Control Engineering Liaoning Petrochemical University Fushun China
In this paper, a design method for PID control based on Gaussian reinforcement learning is proposed to find the optimal policy for linear quadratic tracking of an unknown system. Firstly, the mathematical model of the... 详细信息
来源: 评论
Employing Deep learning Algorithms for Real-Time Analysis and Prediction of Financial Markets and Investment Strategies  13
Employing Deep Learning Algorithms for Real-Time Analysis an...
收藏 引用
13th ieee International conference on Communication systems and Network Technologies, CSNT 2024
作者: Rajendran, Naveen Kumar Kumari, Sweta Pandey, Vijay Kumar Faculty of Engineering and Technology Department of Aerospace Engineering Karnataka Bangalore India Atlas SkillTech University Department of Isme Maharashtra Mumbai India Vivekananda Global University Department of Mechanical Engineering Jaipur India
A new age of data-driven decision-making has begun with the incorporation of deep learning algorithms into the domain of financial markets and investment strategies. A summary of our thorough investigation of this gro... 详细信息
来源: 评论
Adaptive Iterative learning Optimal control for Linear Multi-Agent systems
Adaptive Iterative Learning Optimal Control for Linear Multi...
收藏 引用
data driven control and learning systems (ddcls)
作者: Duhui Chang Yan Geng School of Science Xi'an Polytechnic University Xi'an China
In order to improve tracking performance of a class of linear discrete time-invariant multi-agent systems, an adaptive optimal iterative learning control strategy is designed. To design the control protocol, a paramet... 详细信息
来源: 评论
Consensus Tracking data-driven control of Multi-Agent systems based on Matrix S-Lemma Under Noisy data
Consensus Tracking Data-Driven Control of Multi-Agent System...
收藏 引用
data driven control and learning systems (ddcls)
作者: Shuli Tan Xiufeng Zhang Chunxi Yang Faculty of Mechanical and Electrical Engineering Kunming University of Science and Technology Kunming China Yunnan Key Laboratory of Intelligent Control and Application Kunming Yunnan China
In this paper, the problem of consensus tracking for multi-agent systems in the presence of noise inter-ference is investigated. Unlike the traditional model-based approach, this paper assumes that the dynamics of all... 详细信息
来源: 评论
A Novel Hyperbolic-Secant Reaching Law of Discrete-Time Sliding Mode control
A Novel Hyperbolic-Secant Reaching Law of Discrete-Time Slid...
收藏 引用
data driven control and learning systems (ddcls)
作者: Guoliang Zhou Lingwei Wu School of Intelligent Manufacture Lishui Vocational and Technical College Lishui China School of Intelligent Manufacture Taizhou University Taizhou China
In this paper, a hyperbolic-secant reaching law-based sliding mode control method is presented for uncertain discrete-time controlled systems. the hyperbolic-secant reaching law based on the hyperbolic-secant function... 详细信息
来源: 评论
Asynchronous data-driven control for Discrete-Time Switched systems With Average Dwell Time
Asynchronous Data-Driven Control for Discrete-Time Switched ...
收藏 引用
data driven control and learning systems (ddcls)
作者: Guandi Wang Qixin Chen Yanzheng Zhu College of Mechanical Engineering and Automation Huaqiao University Fujian China College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
the asynchronous data-driven control problem is concerned for discrete-time switched systems with average dwell time. For a class of unknown switched systems, a data-driven approach is employed to parameterize the con... 详细信息
来源: 评论
Dynamic Encoding-Decoding-Based Quantized Iterative learning control
Dynamic Encoding-Decoding-Based Quantized Iterative Learning...
收藏 引用
data driven control and learning systems (ddcls)
作者: Niu Huo Dong Shen School of Mathematics Renmin University of China Beijing P. R. China
the tracking performance of linear discrete-time systems under quantized iterative learning control is investigated in this paper. An encoding-decoding mechanism is utilized to process the output of the system that is... 详细信息
来源: 评论
Containment control via Iterative learning of Fractional-order Singular Multi-agent systems with Initial State learning
Containment Control via Iterative Learning of Fractional-ord...
收藏 引用
data driven control and learning systems (ddcls)
作者: Guangxu Wang Xingyu Zhou Xisheng Dai School of Electrical and Automation Nantong University Nantong China School of Zhang Jian Nantong University Nantong China School of Automation Guangxi University of Science and Technology Liuzhou China
In a category of nonlinear fractional-order singular multi-agent systems (MASs) with initial state learning scheme, the closed-loop $\mathscr{D}^{\alpha}$ -type iterative learning control protocol is introduced to a... 详细信息
来源: 评论
data-driven Deadbeat control for Energy Storage systems
Data-Driven Deadbeat Control for Energy Storage Systems
收藏 引用
data driven control and learning systems (ddcls)
作者: Yanyu Zhang Pengpeng Li Shun Zhou Xibeng Zhang Yi Zhou School of Artificial Intelligence Henan University Zhengzhou P. R. China Longzihu New energy Laboratory Zhengzhou P. R. China
In recent years, Deadbeat control (DBC) has gained recognition as an effective method for controlling Energy Storage systems (ESS). However, traditional DBC often exhibits substantial steady-state errors attributed to... 详细信息
来源: 评论