咨询与建议

限定检索结果

文献类型

  • 716 篇 会议

馆藏范围

  • 716 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 186 篇 计算机科学与技术...
    • 180 篇 控制科学与工程
    • 168 篇 软件工程
    • 46 篇 机械工程
    • 41 篇 电气工程
    • 29 篇 信息与通信工程
    • 26 篇 交通运输工程
    • 21 篇 生物医学工程(可授...
    • 16 篇 电子科学与技术(可...
    • 16 篇 航空宇航科学与技...
    • 14 篇 光学工程
    • 13 篇 石油与天然气工程
    • 11 篇 安全科学与工程
    • 10 篇 动力工程及工程热...
    • 10 篇 土木工程
    • 10 篇 船舶与海洋工程
    • 10 篇 生物工程
    • 9 篇 仪器科学与技术
    • 9 篇 建筑学
    • 9 篇 化学工程与技术
  • 148 篇 理学
    • 83 篇 数学
    • 57 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 11 篇 生物学
  • 28 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 4 篇 经济学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 法学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 179 篇 learning systems
  • 83 篇 control systems
  • 67 篇 accuracy
  • 59 篇 simulation
  • 53 篇 adaptation model...
  • 50 篇 predictive model...
  • 48 篇 data models
  • 40 篇 training
  • 36 篇 process control
  • 34 篇 stability analys...
  • 34 篇 heuristic algori...
  • 32 篇 uncertainty
  • 29 篇 neural networks
  • 29 篇 numerical simula...
  • 29 篇 feature extracti...
  • 28 篇 observers
  • 26 篇 adaptive systems
  • 25 篇 reinforcement le...
  • 24 篇 noise
  • 22 篇 deep learning

机构

  • 24 篇 school of electr...
  • 14 篇 school of mathem...
  • 12 篇 school of electr...
  • 12 篇 school of automa...
  • 11 篇 faculty of infor...
  • 9 篇 college of contr...
  • 9 篇 kunming universi...
  • 9 篇 college of contr...
  • 8 篇 college of artif...
  • 8 篇 school of artifi...
  • 8 篇 college of artif...
  • 8 篇 faculty of mecha...
  • 8 篇 beijing key labo...
  • 8 篇 yunnan key labor...
  • 8 篇 school of electr...
  • 7 篇 school of automa...
  • 7 篇 college of infor...
  • 7 篇 state key labora...
  • 6 篇 school of electr...
  • 6 篇 school of automa...

作者

  • 18 篇 wang li
  • 18 篇 li wang
  • 11 篇 deqing huang
  • 11 篇 ji honghai
  • 11 篇 liu shida
  • 11 篇 shida liu
  • 11 篇 honghai ji
  • 10 篇 huang deqing
  • 8 篇 darong huang
  • 7 篇 xiaoli li
  • 6 篇 kang wang
  • 6 篇 feng li
  • 6 篇 song zhihuan
  • 6 篇 ruikun zhang
  • 6 篇 zhou zhou
  • 5 篇 ye ren
  • 5 篇 fan lingling
  • 5 篇 liu yang
  • 5 篇 ren ye
  • 5 篇 zengqiang chen

语言

  • 632 篇 英文
  • 84 篇 其他
检索条件"任意字段=13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024"
716 条 记 录,以下是351-360 订阅
排序:
Iterative learning for Nonlinear systems with Variable Pass Lengths: Fault Estimation in the Presence of Actuator Faults
Iterative Learning for Nonlinear Systems with Variable Pass ...
收藏 引用
data driven control and learning systems (ddcls)
作者: Shaodong Gu Chuang Chen Jiantao Shi College of Electrical Engineering and Control Science Nanjing Tech University Nanjing China
this research addresses the faults estimation (FE) of the actuator faults in nonlinear dynamic systems with varying pass lengths. Additionally, the adverse impact of the bounded disturbances and measurement noise on t... 详细信息
来源: 评论
Optimal control of Discrete-Time Stochastic systems with Wiener and Poisson Noises: A Model-Free Reinforcement learning Approach
Optimal Control of Discrete-Time Stochastic Systems with Wie...
收藏 引用
data driven control and learning systems (ddcls)
作者: Zhiguo Yan Tingkun Sun Guolin Hu Shandong Academy of Sciences School of Information and Automation Qilu University of Technology Jinan China Shandong Academy of Sciences School of Mathematics and Statistics Qilu University of Technology Jinan China
this paper investigates the problem of optimal control of discrete stochastic Poisson systems. First, the discrete stochastic algebraic Riccati equation containing Poisson noises is proved, and a model-based iterative... 详细信息
来源: 评论
Predefined-Time Attitude Tracking control of Spacecraft Using Incremental Backstepping control Approach
Predefined-Time Attitude Tracking Control of Spacecraft Usin...
收藏 引用
data driven control and learning systems (ddcls)
作者: Haichao Zhang Bing Xiao School of Automation Northwestern Polytechnical University Xi'an P. R. China
In this work, a predefined-time attitude tracking control scheme is developed using the incremental control method. the Taylor series is employed to transform the attitude control system into a discrete-time plant wit... 详细信息
来源: 评论
Improved Residual Reinforcement learning for Dynamic Obstacle Avoidance of Robotic Arm
Improved Residual Reinforcement Learning for Dynamic Obstacl...
收藏 引用
data driven control and learning systems (ddcls)
作者: Zhenting Liu Shan Liu State Key Laboratory of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou China
this paper proposes an improved residual deep reinforcement learning method for robot arm dynamic obstacle avoidance and position servo. the proposed method first simplifies the state space by constructing key points ... 详细信息
来源: 评论
Adaptive Neural Network-Based Terminal Sliding Mode control for AUV
Adaptive Neural Network-Based Terminal Sliding Mode Control ...
收藏 引用
data driven control and learning systems (ddcls)
作者: Wenjie Jia Shubo Wang Qingyi Gao College of Automation Qingdao Unversity Qingdao China
this paper proposes a fast terminal sliding mode control based on adaptive neural network to address the problem of external interference and internal uncertainty in trajectory tracking control for a six degree of fre... 详细信息
来源: 评论
A Novel data-driven Hybrid Adaptive control
A Novel Data-Driven Hybrid Adaptive Control
收藏 引用
data driven control and learning systems (ddcls)
作者: Jun Hao Guoshan Zhang Mengxuan Zhang Yu Wang College of Automation Jiangsu University of Science and Technology Jiangsu China School of Electrical and Information Engineering Tianjin University Tianjin China
As complementary methods to classical model-based control, data-driven control methods can avoid modeling the dynamics of complex systems but achieve good control performance, hence, data-driven control methods are gr... 详细信息
来源: 评论
Model-Free $H_{2}/H_{\infty}$ Predictive control for Discrete-Time System via Q-learning
Model-Free $H_{2}/H_{\infty}$ Predictive Control for Discret...
收藏 引用
data driven control and learning systems (ddcls)
作者: Yihong Lin Peng He Haiying Wan Zhuangyu Liu Xiaoli Luan Fei Liu Key Laboratory of Advanced Process Control for Light Industry Ministry of Education Institute of Automation Jiangnan University Wuxi China
this paper presents a model-free $H_control/H_{\infty}$ Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration soluti... 详细信息
来源: 评论
Adaptive learning control for High-Order Uncertain Nonlinear Multiagent systems under Replay Attacks
Adaptive Learning Control for High-Order Uncertain Nonlinear...
收藏 引用
data driven control and learning systems (ddcls)
作者: Ying Li Youqing Wang Dong Zhao College of Information Science and Technology Beijing University of Chemical Technology Beijing China School of Cyber Science and Technology Beihang University Beijing China
In this study, we focus on the adaptive learning control of high-order uncertain nonlinear multiagent systems (MASs) under replay attacks. the neural-network-based adaptive learning scheme is proposed to approximate t... 详细信息
来源: 评论
data-driven Q-learning control for Nonlinear systems Involving Parallel Multi-Step Deduction
Data-Driven Q-Learning Control for Nonlinear Systems Involvi...
收藏 引用
data driven control and learning systems (ddcls)
作者: Jiangyu Wang Ding Wang Mingming Zhao Junfei Qiao Faculty of Information Technology Beijing University of Technology Beijing China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing University of Technology Beijing China Beijing Institute of Artificial Intelligence Beijing University of Technology Beijing China Beijing Laboratory of Smart Environmental Protection Beijing University of Technology Beijing China
When facing large amounts of data, it is a challenging task to optimize policies by using all data at once. In this paper, a data-driven Q-learning scheme with parallel multi-step deduction is developed to improve lea... 详细信息
来源: 评论
data-driven Model Categorization: Advancing Physical systems Analysis through Graph Neural Networks  13
Data-Driven Model Categorization: Advancing Physical Systems...
收藏 引用
13th International conference on data Science, Technology and Applications, data 2024
作者: Grbavac, Andrija Angerbauer, Martin Grill, Michael Kulzer, André Casal University of Stuttgart Pfaffenwaldring 12 Stuttgart Germany University of Stuttgart Stuttgart Germany
Efficiently categorizing physical system models is crucial for data science applications in scientific and engineering realms, facilitating insightful analysis, control, and optimization. While current methods, often ... 详细信息
来源: 评论