咨询与建议

限定检索结果

文献类型

  • 921 篇 会议
  • 61 册 图书
  • 23 篇 期刊文献

馆藏范围

  • 1,005 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 822 篇 工学
    • 719 篇 计算机科学与技术...
    • 375 篇 软件工程
    • 336 篇 电气工程
    • 109 篇 信息与通信工程
    • 105 篇 光学工程
    • 91 篇 生物工程
    • 54 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 35 篇 化学工程与技术
    • 28 篇 控制科学与工程
    • 21 篇 机械工程
    • 15 篇 安全科学与工程
    • 12 篇 仪器科学与技术
    • 10 篇 土木工程
    • 8 篇 建筑学
    • 8 篇 航空宇航科学与技...
    • 7 篇 交通运输工程
  • 281 篇 理学
    • 127 篇 物理学
    • 118 篇 数学
    • 94 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 33 篇 化学
    • 11 篇 系统科学
  • 269 篇 医学
    • 269 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
  • 75 篇 管理学
    • 63 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 10 篇 法学
    • 9 篇 社会学
  • 4 篇 农学
  • 3 篇 经济学
  • 1 篇 教育学

主题

  • 46 篇 computer graphic...
  • 44 篇 artificial intel...
  • 42 篇 image processing...
  • 33 篇 computer vision
  • 29 篇 deep learning
  • 27 篇 pattern recognit...
  • 25 篇 image segmentati...
  • 22 篇 computer imaging...
  • 20 篇 image enhancemen...
  • 19 篇 graphics process...
  • 17 篇 face recognition
  • 17 篇 image reconstruc...
  • 15 篇 cameras
  • 13 篇 image processing
  • 11 篇 generative adver...
  • 10 篇 object detection
  • 10 篇 computer communi...
  • 10 篇 pixels
  • 10 篇 feature extracti...
  • 10 篇 machine learning

机构

  • 15 篇 indian institute...
  • 11 篇 indian statistic...
  • 11 篇 carnegie mellon ...
  • 11 篇 hebrew universit...
  • 11 篇 google research
  • 10 篇 indian inst tech...
  • 8 篇 indian stat inst...
  • 8 篇 indian inst tech...
  • 7 篇 indian institute...
  • 7 篇 indian institute...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 technische unive...
  • 7 篇 indian inst sci ...
  • 6 篇 indian institute...
  • 6 篇 indian institute...
  • 6 篇 indian inst tech...
  • 6 篇 technical univer...
  • 6 篇 indian inst tech...
  • 6 篇 department of co...

作者

  • 31 篇 chaudhury santan...
  • 26 篇 mukherjee jayant...
  • 25 篇 chaudhuri subhas...
  • 19 篇 das sukhendu
  • 15 篇 babu r. venkates...
  • 14 篇 das partha prati...
  • 14 篇 lall brejesh
  • 14 篇 raman shanmugana...
  • 13 篇 harit gaurav
  • 12 篇 mukherjee dipti ...
  • 12 篇 chanda bhabatosh
  • 12 篇 mishra deepak
  • 11 篇 martial hebert
  • 11 篇 yair weiss
  • 11 篇 vittorio ferrari
  • 11 篇 cristian sminchi...
  • 11 篇 biswas prabir ku...
  • 10 篇 banerjee biplab
  • 10 篇 biswas soma
  • 10 篇 sur arijit

语言

  • 998 篇 英文
  • 4 篇 中文
  • 3 篇 俄文
  • 2 篇 其他
检索条件"任意字段=15th Indian Conference on Computer Vision Graphics and Image Processing"
1005 条 记 录,以下是811-820 订阅
排序:
Split and Knit: 3D Fingerprint Capture with a Single Camera  13
Split and Knit: 3D Fingerprint Capture with a Single Camera
收藏 引用
13th indian conference on computer vision, graphics, and image processing, ICVGIP 2022
作者: Srivastava, Apoorva Namboodiri, Anoop Biometrics and Secure ID Lab CVIT IIIT Hyderabad India
3D fingerprint capture is less sensitive to skin moisture levels and avoids skin deformation, which is common in contact-based sensors, in addition to capturing depth information. Unfortunately, its adoption is limite... 详细信息
来源: 评论
Homomorphic incremental directional averaging for noise suppression in SAR images  6th
Homomorphic incremental directional averaging for noise supp...
收藏 引用
6th National conference on computer vision, Pattern Recognition, image processing and graphics, NCVPRIPG 2017
作者: Aswatha, Shashaank M. Mukhopadhyay, Jayanta Biswas, Prabir K. Aikat, Subhas Indian Institute Technology Kharagpur KharagpurWest Bengal721 302 India
In recent days, it is found that Synthetic Aperture Radar (SAR) images can be a very useful mode for observing and understanding the surface of Earth. the images formed under SAR modality usually suffer from multiplic... 详细信息
来源: 评论
Structure Preserving image Inpainting Using Edge Priors with Contextual Attention  7th
Structure Preserving Image Inpainting Using Edge Priors with...
收藏 引用
7th National conference on computer vision, Pattern Recognition, image processing, and graphics, NCVPRIPG 2019
作者: Singh, Ashish Kumar Agrawal, Praveen Dhiman, Ankit Raj, Rishav Bajpai, Pankaj Kumar Harbhajanka, Yash Samsung R&D Institute Bangalore Bangalore India
Deep learning techniques have produced plausible results for both regular and irregular masks for challenging task of image inpainting. Few approaches make use of extra information like edge priors for generator netwo... 详细信息
来源: 评论
Revealing what to extract from where, for object-centric content based image retrieval (CBIR)  14
Revealing what to extract from where, for object-centric con...
收藏 引用
9th indian conference on computer vision, graphics and image processing, ICVGIP 2014
作者: Gupta, Nitin Das, Sukhendu Chakraborti, Sutanu Dept. of CS and E IIT Madras India
Content Based image Retrieval (CBIR) techniques retrieve similar digital images from a large database. As the user often does not provide any clue (indication) of the region of interest in a query image, most methods ... 详细信息
来源: 评论
Super pixel clustering via Kernel Density Estimation  14
Super pixel clustering via Kernel Density Estimation
收藏 引用
9th indian conference on computer vision, graphics and image processing, ICVGIP 2014
作者: Sheth, Chintak Venkatesh Babu, R. BITS Pilani K. K. Birla Goa Campus Bypass Road National Highway 17B Zuarinagar Goa India Supercomputer Education and Research Centre Indian Institute of Science Bangalore560012 India
Super pixels, which are a result of over-segmentation provide a reasonable compromise between working at pixel level versus with few optimally segmented regions. One fundamental challenge is that of defining the searc... 详细信息
来源: 评论
Feature generation for long-tail classification  21
Feature generation for long-tail classification
收藏 引用
12th indian conference on computer vision, graphics and image processing, ICVGIP 2021
作者: Vigneswaran, Rahul Law, Marc T. Balasubramanian, Vineeth N. Tapaswi, Makarand Indian Institute of Technology Hyderabad India NVIDIA IIIT Hyderabad India
the visual world naturally exhibits an imbalance in the number of object or scene instances resulting in a long-tailed distribution. this imbalance poses significant challenges for classification models based on deep ... 详细信息
来源: 评论
Advances in Multimedia Modeling  1
收藏 引用
丛书名: Lecture Notes in computer Science
1000年
作者: Benoit Huet Alan Smeaton Ketan Mayer-Patel Yannis Avrithis
th Welcome to the 15 International Multimedia Modeling conference (MMM 2009), held January 7–9, 2009 at EURECOM, Sophia-Antipolis, France. MMM is a leadinginternationalconference for researchersandindustry practition... 详细信息
来源: 评论
Text and non-text separation in scanned color-official documents  10
Text and non-text separation in scanned color-official docum...
收藏 引用
10th indian conference on computer vision, graphics and image processing, ICVGIP 2016
作者: Nandedkar, Amit Vijay Mukherjee, Jayanta Sural, Shamik Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Kharagpur India
Official documents consist of text and non-textual elements such as logo, stamp, and signature. Separation of these elements from a scanned document plays a significant role in document image retrieval, recognition, a... 详细信息
来源: 评论
Parametric dictionaries and feature augmentation for continuous domain adaptation  14
Parametric dictionaries and feature augmentation for continu...
收藏 引用
9th indian conference on computer vision, graphics and image processing, ICVGIP 2014
作者: Shekhar, Sumit Shroff, Nitesh Chellappa, Rama Adobe Research Bangalore India Light Paolo Alto United States University of Maryland College Park United States
In this paper, we study methods for learning classifiers for the case when there is a variation introduced by an underlying continuous parameter θ representing transformations like blur, pose, time, etc. First, we co... 详细信息
来源: 评论
Exploring Temporal Differences in 3D Convolutional Neural Networks  7th
Exploring Temporal Differences in 3D Convolutional Neural Ne...
收藏 引用
7th National conference on computer vision, Pattern Recognition, image processing, and graphics, NCVPRIPG 2019
作者: Kanojia, Gagan Kumawat, Sudhakar Raman, Shanmuganathan Indian Institute of Technology Gandhinagar Gandhinagar India
Traditional 3D convolutions are computationally expensive, memory intensive, and due to large number of parameters, they often tend to overfit. On the other hand, 2D CNNs are less computationally expensive and less me... 详细信息
来源: 评论