咨询与建议

限定检索结果

文献类型

  • 920 篇 会议
  • 61 册 图书
  • 23 篇 期刊文献

馆藏范围

  • 1,004 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 821 篇 工学
    • 719 篇 计算机科学与技术...
    • 375 篇 软件工程
    • 336 篇 电气工程
    • 108 篇 信息与通信工程
    • 105 篇 光学工程
    • 91 篇 生物工程
    • 54 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 35 篇 化学工程与技术
    • 28 篇 控制科学与工程
    • 21 篇 机械工程
    • 15 篇 安全科学与工程
    • 12 篇 仪器科学与技术
    • 10 篇 土木工程
    • 8 篇 建筑学
    • 8 篇 航空宇航科学与技...
    • 7 篇 交通运输工程
  • 280 篇 理学
    • 126 篇 物理学
    • 118 篇 数学
    • 94 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 33 篇 化学
    • 11 篇 系统科学
  • 269 篇 医学
    • 269 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
  • 75 篇 管理学
    • 63 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 10 篇 法学
    • 9 篇 社会学
  • 4 篇 农学
  • 3 篇 经济学
  • 1 篇 教育学

主题

  • 46 篇 computer graphic...
  • 44 篇 artificial intel...
  • 42 篇 image processing...
  • 33 篇 computer vision
  • 29 篇 deep learning
  • 27 篇 pattern recognit...
  • 25 篇 image segmentati...
  • 22 篇 computer imaging...
  • 20 篇 image enhancemen...
  • 19 篇 graphics process...
  • 17 篇 face recognition
  • 17 篇 image reconstruc...
  • 15 篇 cameras
  • 13 篇 image processing
  • 11 篇 generative adver...
  • 10 篇 object detection
  • 10 篇 computer communi...
  • 10 篇 pixels
  • 10 篇 feature extracti...
  • 10 篇 machine learning

机构

  • 15 篇 indian institute...
  • 11 篇 indian statistic...
  • 11 篇 carnegie mellon ...
  • 11 篇 hebrew universit...
  • 11 篇 google research
  • 10 篇 indian inst tech...
  • 8 篇 indian stat inst...
  • 8 篇 indian inst tech...
  • 7 篇 indian institute...
  • 7 篇 indian institute...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 technische unive...
  • 7 篇 indian inst sci ...
  • 6 篇 indian institute...
  • 6 篇 indian institute...
  • 6 篇 indian inst tech...
  • 6 篇 technical univer...
  • 6 篇 indian inst tech...
  • 6 篇 department of co...

作者

  • 31 篇 chaudhury santan...
  • 26 篇 mukherjee jayant...
  • 25 篇 chaudhuri subhas...
  • 19 篇 das sukhendu
  • 15 篇 babu r. venkates...
  • 14 篇 das partha prati...
  • 14 篇 lall brejesh
  • 14 篇 raman shanmugana...
  • 13 篇 harit gaurav
  • 12 篇 mukherjee dipti ...
  • 12 篇 chanda bhabatosh
  • 12 篇 mishra deepak
  • 11 篇 martial hebert
  • 11 篇 yair weiss
  • 11 篇 vittorio ferrari
  • 11 篇 cristian sminchi...
  • 11 篇 biswas prabir ku...
  • 10 篇 banerjee biplab
  • 10 篇 biswas soma
  • 10 篇 sur arijit

语言

  • 997 篇 英文
  • 3 篇 俄文
  • 3 篇 中文
  • 2 篇 其他
检索条件"任意字段=15th Indian Conference on Computer Vision Graphics and Image Processing"
1004 条 记 录,以下是971-980 订阅
排序:
Salient Object Detection based on Bayesian Surprise of Restricted Boltzmann Machine  18
Salient Object Detection based on Bayesian Surprise of Restr...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Rahul Roy Susmita Ghosh Ashish Ghosh Machine Intelligence Unit Indian Statistical Institute Kolkata West Bengal Department of Computer Science and Technology Jadavpur University Kolkata West Bengal
this article presents an algorithm for salient object detection by leveraging the Bayesian surprise of the Restricted Boltzmann Machine (RBM). Here an RBM is trained on patches sampled randomly from the input image. D... 详细信息
来源: 评论
Epipolar Geometry based Learning of Multi-view Depth and Ego-Motion from Monocular Sequences  18
Epipolar Geometry based Learning of Multi-view Depth and Ego...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Vignesh Prasad Dipanjan Das Brojeshwar Bhowmick Embedded Systems & Robotics TCS Research & Innovation Kolkata
Deep approaches to predict monocular depth and ego-motion have grown in recent years due to their ability to produce dense depth from monocular images. the main idea behind them is to optimize the photometric consiste... 详细信息
来源: 评论
Regularized Random Walk Ranking for Co-Saliency Detection in images  2018
Regularized Random Walk Ranking for Co-Saliency Detection in...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Sayanti Bardhan Shibu Jacob Indian Institute of Technology Madras Madras India National Institute of Ocean Technology Madras India
Co-saliency detection refers to the computational process for identification of common but prominent and salient foreground regions in an image. However most of the co-saliency detection methods suffer from the follow...
来源: 评论
Sparse Signal Recovery for Multiple Measurement Vectors with Temporally Correlated Entries: A Bayesian Perspective  18
Sparse Signal Recovery for Multiple Measurement Vectors with...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Shruti Sharma Santanu Chaudhury Jayadeva Jayadeva Snigdha Bhagat Indian Institute of Technology Delhi
Bayesian Sparse Signal Recovery (SSR) for Multiple Measurement Vectors, when elements of each row of solution matrix are correlated, is addressed in the paper. We propose a standard linear Gaussian observation model a...
来源: 评论
Learning to Prevent Monocular SLAM Failure using Reinforcement Learning  18
Learning to Prevent Monocular SLAM Failure using Reinforceme...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Vignesh Prasad Karmesh Yadav Rohitashva Singh Saurabh Swapnil Daga Nahas Pareekutty K. Madhava Krishna Balaraman Ravindran Brojeshwar Bhowmick Embedded Systems & Robotics TCS Research & Innovation Kolkata India Robotics Institute Carnegie Mellon University Pittsburgh USA Dept. of Robotics Engineering John Hopkins University Baltimore USA Robotics Research Center KCIS IIIT Hyderabad India Dept. of Computer Science Indian Institute of Technology Madras India
Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with tra... 详细信息
来源: 评论
A Deep Learning-based Model for Phase Unwrapping  2018
A Deep Learning-based Model for Phase Unwrapping
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: G. E. Spoorthi Subrahmanyam Gorthi Rama Krishna Sai Gorthi Indian Institute of Technology Tirupati A.P
Phase unwrapping is an important problem in several applications that attempts to restore original phase from wrapped phase. In this paper, we propose a novel phase unwrapping model based on the deep convolutional neu... 详细信息
来源: 评论
Moving Average Recurrent Neural Network Model for Video-based Person Re-Identification  2018
Moving Average Recurrent Neural Network Model for Video-base...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Muhammed Fasil C. Subhasis Chaudhuri Dept. of Electrical Engineering Indian Institute of Technology Bombay Mumbai India
Person re-identification has great applications in video surveillance. It can be viewed as recognizing the same person across non-overlapping cameras. Video-based person re-identification methods are gaining increased... 详细信息
来源: 评论
Towards Automated Floorplan Generation  18
Towards Automated Floorplan Generation
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Kunal Chelani Chitturi Sidhartha Venu Madhav Govindu Indian Institute of Science Bengaluru India
In this paper, we propose a pipeline for generating a 2D floorplan using depth cameras. In our pipeline we use an existing approach to recovering the camera motion trajectories from the depth and RGB sequences. Given ...
来源: 评论
Multiple Kernel Fisher Discriminant Metric Learning for Person Re-identification  2018
Multiple Kernel Fisher Discriminant Metric Learning for Pers...
收藏 引用
Proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: T. M. Feroz Ali Rajbabu Velmurugan Kalpesh K. Patel Subhasis Chaudhuri Dept. of Electrical Engineering Indian Institute of Technology Bombay Mumbai India
Person re-identification addresses the problem of matching pedestrian images across disjoint camera views. Design of feature descriptor and distance metric learning are the two fundamental tasks in person re-identific... 详细信息
来源: 评论
Generative Adversarial Networks for 3D Scene Reconstruction
Generative Adversarial Networks for 3D Scene Reconstruction
收藏 引用
International conference on Computing and Networking Technology (ICCNT)
作者: K. Senthamil Selvan Samaksh Goyal Aravindan M K Omkaresh S. Kulkarni K. Yuvaraj Nitish Vashisht Department of Electronics and Communication Engineering Prince Shri Venkateshwara Padmavathy Engineering College Chennai india Quantum University Research Center Quantum University School of Engineering and Technology Mechaical Engineering JAIN (Deemed to be University) Bangalore Karnataka India Department of Computer Science and Engineering (AI & ML) Vishwakarma Institute of Technology Pune INDIA Department of Computer Science Karpagam Academy of Higher Education Coimbatore Centre of Research Impact and Outcome Chitkara University Rajpura Punjab India
Generative opposed Networks (GANs) are a generative model broadly utilized in device mastering, PC vision, and herbal language processing (NLP). GANs hire neural networks, a generator, and a discriminator that are tra... 详细信息
来源: 评论