咨询与建议

限定检索结果

文献类型

  • 515 篇 会议
  • 20 篇 期刊文献
  • 14 册 图书

馆藏范围

  • 549 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 368 篇 工学
    • 322 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 48 篇 控制科学与工程
    • 40 篇 电气工程
    • 28 篇 信息与通信工程
    • 16 篇 生物工程
    • 7 篇 机械工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 6 篇 石油与天然气工程
    • 6 篇 交通运输工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 光学工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
  • 100 篇 理学
    • 77 篇 数学
    • 22 篇 统计学(可授理学、...
    • 19 篇 生物学
    • 17 篇 系统科学
    • 6 篇 物理学
  • 46 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 17 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 31 篇 教育学
    • 31 篇 教育学
  • 16 篇 医学
    • 14 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 13 篇 法学
    • 13 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 2 篇 艺术学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 57 篇 machine learning
  • 34 篇 reinforcement le...
  • 31 篇 complexity theor...
  • 25 篇 training
  • 23 篇 learning systems
  • 21 篇 deep learning
  • 21 篇 game theory
  • 17 篇 artificial intel...
  • 13 篇 task analysis
  • 12 篇 neural networks
  • 11 篇 data mining
  • 11 篇 data models
  • 10 篇 education
  • 10 篇 graph theory
  • 10 篇 decision trees
  • 10 篇 feature extracti...
  • 10 篇 students
  • 9 篇 clustering algor...
  • 8 篇 tools
  • 8 篇 predictive model...

机构

  • 3 篇 natl univ singap...
  • 3 篇 natl univ singap...
  • 3 篇 tel aviv univ te...
  • 2 篇 huazhong univers...
  • 2 篇 žilinská univerz...
  • 2 篇 department of in...
  • 2 篇 school of comput...
  • 2 篇 shanghai jiao to...
  • 2 篇 gakushuin univ t...
  • 2 篇 univ edinburgh e...
  • 2 篇 kempten universi...
  • 2 篇 department of sy...
  • 2 篇 central south un...
  • 2 篇 technion israel ...
  • 2 篇 department of el...
  • 2 篇 malaysian instit...
  • 2 篇 nanyang technolo...
  • 2 篇 harvard univ cam...
  • 2 篇 carnegie mellon ...
  • 2 篇 hokkaido univ gr...

作者

  • 4 篇 flusser jan
  • 3 篇 case john
  • 3 篇 jain sanjay
  • 3 篇 stephan frank
  • 2 篇 kuboyama tetsuji
  • 2 篇 mahmud m. m. has...
  • 2 篇 eirini eleni tsi...
  • 2 篇 belle vaishak
  • 2 篇 feldman vitaly
  • 2 篇 shah shrenik
  • 2 篇 fisayo sangoleye
  • 2 篇 tsiropoulou eiri...
  • 2 篇 tambe milind
  • 2 篇 yoshinaka ryo
  • 2 篇 jianqing lin
  • 2 篇 chuang tsung-yen
  • 2 篇 kostkova jitka
  • 2 篇 graepel thore
  • 2 篇 reyzin lev
  • 2 篇 md sahabul hossa...

语言

  • 534 篇 英文
  • 8 篇 其他
  • 5 篇 中文
  • 2 篇 葡萄牙文
检索条件"任意字段=18th International Conference on Algorithmic Learning Theory"
549 条 记 录,以下是41-50 订阅
排序:
algorithmic learning theory  1
收藏 引用
丛书名: Lecture Notes in Computer Science
1000年
作者: Marcus Hutter Rocco A. Servedio Eiji Takimoto
this volume contains the papers presented at the 18th international Conf- ence on algorithmic learning theory (ALT 2007), which was held in Sendai (Japan) during October 1–4, 2007. the main objective of the conferenc... 详细信息
来源: 评论
the Item Response theory Model for an AI-based Adaptive learning System  18
The Item Response Theory Model for an AI-based Adaptive Lear...
收藏 引用
18th international conference on Information Technology Based Higher Education and Training (IthET)
作者: Cui, Wei Xue, Zhen Shen, Jun Sun, Geng Li, Jianxin Squirrel AI Learning Inc Shanghai Peoples R China Univ Wollongong Sch Comp & Informat Technol Wollongong NSW Australia Deakin Univ Sch Informat Technol Melbourne Vic Australia
Item characteristics (e.g. item difficulty), and students' latent traits (e.g. student ability) are essential in a personalized learning system. In such system, items of different characteristics need to be recomm... 详细信息
来源: 评论
Malthusian Reinforcement learning  18
Malthusian Reinforcement Learning
收藏 引用
18th international conference on Autonomous Agents and MultiAgent Systems (AAMAS)
作者: Leibo, Joel Z. Perolat, Julien Hughes, Edward Wheelwright, Steven Marblestone, Adam H. Duenez-Guzman, Edgar Sunehag, Peter Dunning, Iain Graepel, thore DeepMind London England
Here we explore a new algorithmic framework for multi-agent reinforcement learning, called Malthusian reinforcement learning, which extends self-play to include fitness-linked population size dynamics that drive ongoi... 详细信息
来源: 评论
GA-Based Attempts to Improve the Recognition Rate and Generalization Capacity of the Nonlinear Soft Margin Support Vector Machines  18
GA-Based Attempts to Improve the Recognition Rate and Genera...
收藏 引用
18th international conference on System theory, Control and Computing (ICSTCC)
作者: State, Luminita Cocianu, Catalina Mircea, Marinela Univ Pitesti Dept Math & Informat Pitesti Romania Bucharest Univ Econ Studies Dept Informat & Cybernet Bucharest Romania
the aim of the paper is to report a new method based on genetic computation of designing a nonlinear soft margin SVM yielding to significant improvements in discriminating between two classes. the design of the SVM is... 详细信息
来源: 评论
Feasible iteration of feasible learning functionals
Feasible iteration of feasible learning functionals
收藏 引用
18th international conference on algorithmic learning theory
作者: Case, John Koetzing, Timo Paddock, Todd Univ Delaware Dept Comp & Informat Sci Newark DE 19716 USA Majest Res New York NY 10020 USA
For learning functions in the limit, an algorithmic learner obtains successively more data about a function and calculates trials each resulting in the output of a corresponding program, where, hopefully, these progra... 详细信息
来源: 评论
Prediction in Intelligence: An Empirical Comparison of Off-policy Algorithms on Robots  18
Prediction in Intelligence: An Empirical Comparison of Off-p...
收藏 引用
18th international conference on Autonomous Agents and MultiAgent Systems (AAMAS)
作者: Rafiee, Banafsheh Ghiassian, Sina White, Adam Sutton, Richard S. Univ Alberta Dept Comp Sci Edmonton AB Canada
the ability to continually make predictions about the world may be central to intelligence. Off-policy learning and general value functions (GVFs) are well-established algorithmic techniques for learning about many si... 详细信息
来源: 评论
A Systems theoretic Approach to Online Machine learning  18
A Systems Theoretic Approach to Online Machine Learning
收藏 引用
18th Annual IEEE international Systems conference (SysCon)
作者: du Preez, Anli Beling, Peter Cody, Tyler Virginia Tech Grado Dept Ind & Syst Engn Blacksburg VA 24061 USA Virginia Tech Responsible Gen Intelligence Lab Arlington VA 24061 USA
the machine learning formulation of online learning is incomplete from a systems theoretic perspective. Typically, machine learning research emphasizes domains and tasks, and a problem solving worldview. It focuses on... 详细信息
来源: 评论
Characteristic of reviewer's assessments of individual learning performance Analysis of instructors' assessments using IRT  18
Characteristic of reviewer's assessments of individual learn...
收藏 引用
18th international conference on Information Technology Based Higher Education and Training (IthET)
作者: Nakayama, Minoru Tokyo Inst Technol Informat & Commun Engn Meguro Ku Tokyo Japan
the relationships between rating scores of instructors and student peers were analysed using an open data set and an item response theory (IRT) model. the characteristics of report rating behaviours of instructors and... 详细信息
来源: 评论
HIERARCHICAL INVARIANT SPARSE MODELING FOR IMAGE ANALYSIS
HIERARCHICAL INVARIANT SPARSE MODELING FOR IMAGE ANALYSIS
收藏 引用
18th IEEE international conference on Image Processing (ICIP)
作者: Bar, Leah Sapiro, Guillermo Tel Aviv Univ Tel Aviv Israel Univ Minnesota Minneapolis MN 55455 USA
Sparse representation theory has been increasingly used in signal processing and machine learning. In this paper we introduce a hierarchical sparse modeling approach which integrates information from the image patch l... 详细信息
来源: 评论
Poster: Unraveling Reward Functions for Head-to-Head Autonomous Racing in AWS DeepRacer  23
Poster: Unraveling Reward Functions for Head-to-Head Autonom...
收藏 引用
international Symposium on theory, algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (ACM MobiHoc)
作者: Tian, Allen John, Eddy Guerra Yang, Kecheng Univ Chicago Chicago IL 60637 USA Univ Houston Downtown Houston TX USA Texas State Univ San Marcos TX USA
AWS DeepRacer is a fully autonomous 1/18th scale race car designed to help developers learn and practice reinforcement learning through cloud-based simulations and real-world racing. What drives the reinforcement lear... 详细信息
来源: 评论