咨询与建议

限定检索结果

文献类型

  • 291 篇 会议
  • 9 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 303 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 224 篇 工学
    • 216 篇 计算机科学与技术...
    • 149 篇 软件工程
    • 58 篇 信息与通信工程
    • 12 篇 电气工程
    • 6 篇 生物工程
    • 4 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 安全科学与工程
  • 27 篇 理学
    • 18 篇 数学
    • 8 篇 生物学
    • 3 篇 化学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 1 篇 系统科学
  • 15 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 33 篇 cloud computing
  • 16 篇 parallel computi...
  • 11 篇 parallel process...
  • 11 篇 distributed comp...
  • 11 篇 distributed comp...
  • 9 篇 computer archite...
  • 9 篇 computational mo...
  • 8 篇 parallel program...
  • 8 篇 resource managem...
  • 8 篇 distributed syst...
  • 7 篇 peer to peer com...
  • 7 篇 optimization
  • 7 篇 high performance...
  • 6 篇 fault tolerance
  • 6 篇 educational inst...
  • 6 篇 servers
  • 6 篇 real-time system...
  • 6 篇 protocols
  • 6 篇 performance eval...
  • 6 篇 gpu

机构

  • 3 篇 a*star institute...
  • 3 篇 topic committee ...
  • 2 篇 univ adelaide sc...
  • 2 篇 univ texas dept ...
  • 2 篇 washington univ ...
  • 2 篇 school of comput...
  • 2 篇 laria laboratoir...
  • 2 篇 guizhou universi...
  • 2 篇 guizhou universi...
  • 2 篇 beihang univ sta...
  • 2 篇 graduate school ...
  • 2 篇 los alamos natl ...
  • 2 篇 tsinghua univers...
  • 2 篇 univ calif san d...
  • 2 篇 department of co...
  • 2 篇 scripps res inst...
  • 2 篇 kth royal inst t...
  • 2 篇 natl univ def te...
  • 2 篇 college of compu...
  • 2 篇 kent state univ ...

作者

  • 5 篇 li xiaorong
  • 3 篇 xiaorong li
  • 2 篇 seme david
  • 2 篇 kanagasabai raja...
  • 2 篇 cong guojing
  • 2 篇 riccardo loti
  • 2 篇 le duy ngan
  • 2 篇 putchong uthayop...
  • 2 篇 dongarra jack
  • 2 篇 motomura shinich...
  • 2 篇 taufer m
  • 2 篇 ta nguyen binh d...
  • 2 篇 kawamura takao
  • 2 篇 vlassov vladimir
  • 2 篇 kerbyson dj
  • 2 篇 bader david a.
  • 2 篇 tziritas nikos
  • 2 篇 wu weigang
  • 2 篇 liu jie
  • 2 篇 coddington pd

语言

  • 303 篇 英文
检索条件"任意字段=18th International Conference on Parallel and Distributed Computing Systems, PDCS 2005"
303 条 记 录,以下是21-30 订阅
排序:
parallelNAS: A parallel and distributed System for Neural Architecture Search
ParallelNAS: A Parallel and Distributed System for Neural Ar...
收藏 引用
IEEE international conference on High Performance computing and Communications (HPCC)
作者: Xiaoyang Qu Jianzong Wang Jing Xiao Ping An Technology (Shenzhen) Co. Ltd. Shenzhen China
Although deep learning takes researchers out of complicated feature engineering, designing practical deep learning models is still a complicated process. Neural Architecture Search (NAS) is famous for automating the d... 详细信息
来源: 评论
DSANA: A distributed machine learning acceleration solution based on dynamic scheduling and network acceleration
DSANA: A distributed machine learning acceleration solution ...
收藏 引用
IEEE international conference on High Performance computing and Communications (HPCC)
作者: Runhua Zhang Guowei Shen Liangyi Gong Chun Guo Guizhou University China Guiyang Beihang University China Beijing Guizhou University China Guiyang Tsinghua University China Beijing
distributed machine learning(DML) has become a feasible solution to deal with the growing training data and models. Reviewing the existing architecture of DML, Parametric server(PS) architecture stands out in iterativ... 详细信息
来源: 评论
parallel Task Graphs Scheduling Based on the Internal Structure  18th
Parallel Task Graphs Scheduling Based on the Internal Struct...
收藏 引用
18th Mexican international conference on Artificial Intelligence (MICAI)
作者: Velarde Martinez, Apolinar Inst Tecnol El Llano Aguascalientes Carretera Aguascalientes San Luis Potosi Km 18 Aguascalientes Aguascalientes Mexico
It is well known that parallel Task Graphs (PTG) are modeled with Directed Acyclic Graphs (DAG Tasks). DAG tasks are scheduled in Heterogeneous distributed computing systems (HDCS) for execution with different techniq... 详细信息
来源: 评论
Interactive data science at scale  21
Interactive data science at scale
收藏 引用
Proceedings of the 18th ACM international conference on computing Frontiers
作者: David A. Bader New Jersey Institute of Technology
A real-world challenge in data science is to develop interactive methods for quickly analyzing new and novel data sets that are potentially of massive scale. In this talk, we discuss our development of suffix array an... 详细信息
来源: 评论
RDFM: Resilient distributed Factorization Machines  18th
RDFM: Resilient Distributed Factorization Machines
收藏 引用
18th international conference on Artificial Intelligence and Soft computing (ICAISC)
作者: da Silva, Andre Rodrigo Rodrigues, Leonardo M. Rech, Luciana de Oliveira Luiz, Aldelir Fernando Fed Univ Santa Catarina UFSC Dept Informat & Stat INE BR-88040900 Florianopolis SC Brazil
Factorization Machines algorithms have been successfully applied to recommender systems due to their ability to handle data sparsity and the cold-start problem. their scalability makes it suitable to produce evergrowi... 详细信息
来源: 评论
Real Time Key Frame Extraction through parallel Computation of Entropy Difference  18th
Real Time Key Frame Extraction Through Parallel Computation ...
收藏 引用
18th international conference on Computer Information systems and Industrial Management
作者: Gautam, Nandita Das, Debdoot Khatua, Sunirmal Saha, Banani Univ Calcutta Comp Sci Dept Kolkata 700098 India
the advancement of image processing in the field of Artificial Intelligence has created various research prospects in the area of object detection, pattern recognition etc. Capturing real time video stream for multipl... 详细信息
来源: 评论
Privacy-Preserving Multi-Task Learning  18
Privacy-Preserving Multi-Task Learning
收藏 引用
18th IEEE international conference on Data Mining Workshops (ICDMW)
作者: Liu, Kunpeng Uplavikar, Nitish Jiang, Wei Fu, Yanjie Missouri Univ Sci & Technol Rolla MO 65409 USA Univ Missouri Columbia MO 65211 USA
Multi-task learning (MTL), improving learning performance by transferring information between related tasks, has drawn more and more attention in the data mining field. To tackle tasks whose data are stored at differe... 详细信息
来源: 评论
Comparative Study of distributed Deep Learning Tools on Supercomputers  18th
Comparative Study of Distributed Deep Learning Tools on Supe...
收藏 引用
18th international conference on Algorithms and Architectures for parallel Processing (ICA3PP)
作者: Du, Xin Kuang, Di Ye, Yan Li, Xinxin Chen, Mengqiang Du, Yunfei Wu, Weigang Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China Guangdong Prov Key Lab Big Data Anal & Proc Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
With the growth of the scale of data set and neural networks, the training time is increasing rapidly. distributed parallel training has been proposed to accelerate deep neural network training, and most efforts are m... 详细信息
来源: 评论
New Multi-objectives Scheduling Strategies in Docker SwarmKit  18th
New Multi-objectives Scheduling Strategies in Docker SwarmKi...
收藏 引用
18th international conference on Algorithms and Architectures for parallel Processing (ICA3PP)
作者: Menouer, Tarek Cerin, Christophe Leclercq, Etienne Univ Paris 13 Sorbonne Paris Cite LIPN CNRS UMR 7030 F-93430 Villetaneuse France
this paper presents new multi-objectives scheduling strategies implemented in Docker SwarmKit. Docker SwarmKit is a container toolkit for orchestrating distributed systems at any scale. Currently, Docker SwarmKit has ... 详细信息
来源: 评论
TAMM: A New Topology-Aware Mapping Method for parallel Applications on the Tianhe-2A Supercomputer  18th
TAMM: A New Topology-Aware Mapping Method for Parallel Appli...
收藏 引用
18th international conference on Algorithms and Architectures for parallel Processing (ICA3PP)
作者: Chen, Xinhai Liu, Jie Li, Shengguo Xie, Peizhen Chi, Lihua Wang, Qinglin Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha 410073 Peoples R China Hunan Inst Traff Engn Inst Adv Sci & Technol Hengyang 421001 Peoples R China
With the increasing size of high performance computing systems, the expensive communication overhead between processors has become a key factor leading to the performance bottleneck. However, default process-to-proces... 详细信息
来源: 评论