咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1011-1020 订阅
排序:
Oxygen Saturation Estimation Based on Optimal Band Selection from Multi-band Video
Oxygen Saturation Estimation Based on Optimal Band Selection...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Takahashi, Ryo Ashida, Koichi Kobayashi, Yasuo Tokunaga, Rumi Kodama, Shuhei Tsumura, Norimichi Chiba Univ Grad Sch Adv Integrat Sci Inage Ku 1-33 Yayoi Chiba Japan ASTRODESIGN Inc Ota Ku 1-5-2 Minami Yukigaya Tokyo Japan Chiba Univ Grad Sch Global & Transdisciplinary Studies Inage Ku 1-33 Yayoi Chiba Japan Chiba Univ Grad Sch Engn Inage Ku 1-33 Yayoi Chiba Japan
In this study, we propose a method to estimate oxygen saturation by selecting the best bands from video images captured by a multiband camera. Oxygen saturation is one of the most important bioindicators for measuring... 详细信息
来源: 评论
DiffLight: Integrating Content and Detail for Low-light Image Enhancement
DiffLight: Integrating Content and Detail for Low-light Imag...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Yixu Feng Shuo Hou Haotian Lin Yu Zhu Peng Wu Wei Dong Jinqiu Sun Qingsen Yan Yanning Zhang Northwestern Polytechnical University Xi’an University of Architecture and Technology
The Low Light Image Enhancement (LLIE) task has been a hotspot in low-level computer vision research. The camera sensor can only capture a small amount of ambient light signal in low-light condition, resulting in sign... 详细信息
来源: 评论
Snapshot Spectral Imaging for Face Anti-Spoofing: Addressing Data Challenges with Advanced Processing and Training
Snapshot Spectral Imaging for Face Anti-Spoofing: Addressing...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Hui Li Yaowen Xu Zhaofan Zou Zhixiang He China Telecom Artificial Intelligence Technology Co. Ltd Beijing China
Although considerable research progress has been made in the field of face anti-spoofing(FAS), it still faces continuous threats from ultra-realistic face mask attacks. Facing the challenge of highly realistic flexibl... 详细信息
来源: 评论
Dynamic Feature Queue for Surveillance Face Anti-spoofing via Progressive Training
Dynamic Feature Queue for Surveillance Face Anti-spoofing vi...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Keyao Wang Mouxiao Huang Guosheng Zhang Haixiao Yue Gang Zhang Yu Qiao Department of Computer Vision Technology (VIS) Baidu Inc. ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences
In recent years, face recognition systems have faced increasingly security threats, making it essential to employ Face Anti-spoofing (FAS) to protect against various types of attacks in traditional scenarios like phon...
来源: 评论
Thermal Image Super-Resolution Challenge - PBVS 2021
Thermal Image Super-Resolution Challenge - PBVS 2021
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rivadeneira, Rafael E. Sappa, Angel D. Vintimilla, Boris X. Nathan, Sabari Kansal, Priya Mehri, Armin Ardakani, Parichehr Behjati Dalal, Anurag Akula, Aparna Sharma, Darshika Pandey, Shashwat Kumar, Basant Yao, Jiaxin Wu, Rongyuan Feng, Kai Li, Ning Zhao, Yongqiang Patel, Heena Chudasama, Vishal Prajapati, Kalpesh Sarvaiya, Anjali Upla, Kishor P. Raja, Kiran Ramachandra, Raghavendra Busch, Christoph Almasri, Feras Vandamme, Thomas Debeir, Olivier Gutierrez, Nolan B. Nguyen, Quan H. Beksi, William J. Escuela Super Politecn Litoral ESPOL Fac Ingn Elect & Comp CIDIS Campus Gustavo Galindo Km 30-5 Via Perimetral Guayaquil Ecuador Comp Vis Ctr Campus UAB Barcelona 08193 Spain Couger Inc Tokyo Japan Cent Sci Instruments Org Chandigarh India Indian Inst Engn Sci & Technol Sibpur India MNNIT Allahabad Prayagraj India Northwestern Polytech Univ Xian Peoples R China SVNIT Surat India NTNU Gjovik Norway Univ Libre Bruxelles Brussels Belgium Univ Texas Arlington Arlington TX 76019 USA
This paper presents results from the second Thermal Image Super-Resolution (TISR) challenge organized in the framework of the Perception Beyond the Visible Spectrum (PBVS) 2021 workshop. For this second edition, the s... 详细信息
来源: 评论
Fast and Accurate Single-Image Depth Estimation on Mobile Devices, Mobile AI 2021 Challenge: Report
Fast and Accurate Single-Image Depth Estimation on Mobile De...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Raspberry Pi Trading Ltd Cambridge England AI Witchlabs Zurich Switzerland Tencent GY Lab Shenzhen Peoples R China Huazhong Univ Sci & Technol Key Lab Image Proc & Intelligent Control Minist Educ Sch Artificial Intelligence & Automat Wuhan Peoples R China Chinese Acad Sci Inst Automat Nanjing Artificial Intelligence Chip Res Beijing Peoples R China Black Sesame Technol Inc Singapore Singapore Korea Adv Inst Sci & Technol Visual Media Lab Daejeon South Korea Harbin Inst Technol Harbin Peoples R China Peng Cheng Lab Shenzhen Peoples R China Natl Cheng Kung Univ Multimedia & Comp Vis Lab Tainan Taiwan Samsung Res UK Cambridge England OPPO Res Inst Beijing Peoples R China Swiss Fed Inst Technol Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
IndoFashion : Apparel Classification for Indian Ethnic Clothes
IndoFashion : Apparel Classification for Indian Ethnic Cloth...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rajput, Pranjal Singh Aneja, Shivangi Delft Univ Technol Delft Netherlands Tech Univ Munich Munich Germany
Cloth categorization is an important research problem that is used by e-commerce websites for displaying correct products to the end-users. Indian clothes have a large number of clothing categories both for men and wo... 详细信息
来源: 评论
NTIRE 2021 Learning the Super-Resolution Space Challenge
NTIRE 2021 Learning the Super-Resolution Space Challenge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Busch, Christoph Chen, Yang Cheng, Jian Chudasama, Vishal Gang, Ruipeng Gao, Shangqi Gao, Kun Gong, Laiyun Han, Qingrui Huang, Chao Jin, Zhi Jo, Younghyun Kim, Seon Joo Kim, Younggeun Lee, Seungjun Lei, Yuchen Li, Chu-Tak Li, Chenghua Li, Ke Liu, Zhi-Song Liu, Youming Nan, Nan Park, Seung-Ho Patel, Heena Peng, Shichong Prajapati, Kalpesh Qi, Haoran Raja, Kiran Ramachandra, Raghavendra Siu, Wan-Chi Son, Donghee Song, Ruixia Upla, Kishor Wang, Li-Wen Wang, Yatian Wang, Junwei Wu, Qianyu Xu, Xinhua Yang, Sejong Yuan, Zhen Zhang, Liting Zhang, Huanrong Zhang, Junkai Zhang, Yifan Zhang, Zhenzhou Zhou, Hangqi Zhu, Aichun Zhuang, Xiahai Zou, Jiaxin Swiss Fed Inst Technol Zurich Switzerland Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Zhejiang Univ Hangzhou Peoples R China NetEaseYunXin Beijing Peoples R China Yonsei Univ Seoul South Korea Seoul Natl Univ Seoul South Korea Univ Ulsan Coll Med Asan Med Ctr Ulsan South Korea Lomin Inc Portland OR USA Fudan Univ Shanghai Peoples R China Simon Fraser Univ Burnaby BC Canada Caritas Inst Higher Educ Hong Kong Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China North China Univ Technol Beijing Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China CASIA Beijing Peoples R China NRTA Beijing Peoples R China NCUT Beijing Peoples R China Nanjing Tech Univ Sch Comp Sci & Technol Nanjing Peoples R China Southeast Univ Lab Image Sci & Technol Nanjing Peoples R China SVNIT Surat Gujarat India NTNU Trondheim Norway
This paper reviews the NTIRE 2021 challenge on learning the super-Resolution space. It focuses on the participating methods and final results. The challenge addresses the problem of learning a model capable of predict... 详细信息
来源: 评论
Vln↻bert: A Recurrent vision-and-Language BERT for Navigation
Vln↻bert: A Recurrent Vision-and-Language BERT for Navigati...
收藏 引用
2021 ieee/CVF conference on computer vision and pattern recognition, cvpr 2021
作者: Hong, Yicong Wu, Qi Qi, Yuankai Rodriguez-Opazo, Cristian Gould, Stephen The Australian National University Australian Centre for Robotic Vision Australia The University of Adelaide Australian Centre for Robotic Vision Australia
Accuracy of many visiolinguistic tasks has benefited significantly from the application of vision-and-language (V&L) BERT. However, its application for the task of vision- and-language navigation (VLN) remains lim... 详细信息
来源: 评论
Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results
Wild Face Anti-Spoofing Challenge 2023: Benchmark and Result...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Dong Wang Jia Guo Qiqi Shao Haochi He Zhian Chen Chuanbao Xiao Ajian Liu Sergio Escalera Hugo Jair Escalante Zhen Lei Jun Wan Jiankang Deng MoreDian InsightFace CASIA Computer Vision Center (UAB) University of Barcelona INAOE
Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems. Despite substantial advancements, the generalization of existing approaches to real-world applic...
来源: 评论