咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1041-1050 订阅
排序:
M2SGD: Learning to Learn ImportantWeights
M<SUP>2</SUP>SGD: Learning to Learn ImportantWeights
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kuo, Nicholas I-Hsien Harandi, Mehrtash Fourrier, Nicolas Walder, Christian Ferraro, Gabriela Suominen, Hanna Australian Natl Univ RSCS Canberra ACT Australia Monash Univ ECSE Clayton Vic Australia CSIRO Data61 Canberra ACT Australia Vole Univ Leonard de Vinci Paris France Univ Turku Dept Future Technol Turku Finland
Meta-learning concerns rapid knowledge acquisition. One popular approach cast optimisation as a learning problem and it has been shown that learnt neural optimisers updated base learners more quickly than their hand-c... 详细信息
来源: 评论
NTIRE 2021 Challenge on Video Super-Resolution
NTIRE 2021 Challenge on Video Super-Resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Son, Sanghyun Lee, Suyoung Nah, Seungjun Timofte, Radu Lee, Kyoung Mu Chan, Kelvin C. K. Zhou, Shangchen Xu, Xiangyu Loy, Chen Change Jiang, Boyuan Lin, Chuming Dong, Yuchun Luo, Donghao Chu, Wenqing Ji, Xiaozhong Yang, Siqian Tai, Ying Wang, Chengjie Li, Jilin Huang, Feiyue Chen, Chengpeng Chu, Xiaojie Zhang, Jie Lu, Xin Chen, Liangyu Lin, Jing Du, Guodong Hao, Jia Zou, Xueyi Zhang, Qi Jiang, Lielin Li, Xin Zheng, He Liu, Fanglong He, Dongliang Li, Fu Dang, Qingqing Yi, Peng Wang, Zhongyuan Jiang, Kui Jiang, Junjun Ma, Jiayi Chen, Yuxiang Wang, Yutong Liu, Ting Sun, Qichao Liang, Huanwei Li, Yiming Li, Zekun Ruan, Zhubo Shang, Fanjie Guo, Chen Li, Haining Luo, Renjun Shen, Longjie Zafirouli, Kassiani Karageorgos, Konstantinos Konstantoudakis, Konstantinos Dimou, Anastasios Daras, Petros Song, Xiaowei Zhuo, Xu Liu, Hanxi Guo, Mengxi Li, Junlin Li, Yu Zhu, Ye Wang, Qing Zhao, Shijie Sun, Xiaopeng Zhan, Gen Xie, Tangxin Jia, Yu Lu, Yunhua Zhang, Wenhao Sun, Mengdi Michelini, Pablo Navarrete Zhang, Xueheng Jiang, Hao Chen, Zhiyu Chen, Li Xiong, Zhiwei Xiao, Zeyu Xu, Ruikang Cheng, Zhen Fu, Xueyang Song, Fenglong Luo, Zhipeng Yao, Yuehan Dutta, Saikat Shah, Nisarg A. Das, Sourya Dipta Zhao, Peng Shi, Yukai Liu, Hongying Shang, Fanhua Liu, Yuanyuan Chen, Fei Yu, Fangxu Gao, Ruisheng Bai, Yixin Heo, Jeonghwan Yue, Shijie Li, Chenghua Li, Jinjing Zheng, Qian Gang, Ruipeng Song, Ruixia Wee, Seungwoo Jeong, Jechang Li, Chen Wen, Geyingjie Chai, Xinning Song, Li SNU ASRI Dept ECE Seoul South Korea Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Nanyang Technol Univ S Lab Singapore Singapore Tencent YouTu Lab Shenzhen Peoples R China East China Normal Univ Shanghai Peoples R China Megvii Beijing Peoples R China Fudan Univ Shanghai Peoples R China Huawei Noahs Ark Lab Shanghai Peoples R China HiSilicon Shanghai Technol Co Ltd Shanghai Peoples R China Baidu Inc Dept Comp Vis Technol Vis Beijing Peoples R China Wuhan Univ Natl Engn Res Ctr Multimedia Software Wuhan Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Peoples R China Wuhan Univ Elect Informat Sch Wuhan Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China Meitu Inc MTlab Xiamen Peoples R China Xidian Univ Xian Peoples R China ITI CERTH Visual Comp Lab VCL Patras Greece Southeast Univ Nanjing Peoples R China Tencent PCG Appl Res Ctr ARC Shenzhen Peoples R China South China Univ Technol Guangzhou Peoples R China ByteDance Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China China Elect Technol Cyber Secur Co Ltd Beijing Peoples R China BOE Technol Grp Co Ltd AIoT R&D Ctr Beijing Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Sci & Technol China Chengdu Peoples R China Huawei Noahs Ark Lab Beijing Peoples R China DeepBlue Technol Shanghai Co Ltd Shanghai Peoples R China Indian Inst Technol Madras Madras Tamil Nadu India Indian Inst Technol Jodhpur Jodhpur Rajasthan India Jadavpur Univ Kolkata India Hanyang Univ Seoul South Korea NCUT Beijing Peoples R China CASIA Beijing Peoples R China CUC Beijing Peoples R China NRTA Beijing Peoples R China
Super-Resolution (SR) is a fundamental computer vision task that aims to obtain a high-resolution clean image from the given low-resolution counterpart. This paper reviews the NTIRE 2021 Challenge on Video Super-Resol... 详细信息
来源: 评论
Simplifying Transformations for a Family of Elastic Metrics on the Space of Surfaces
Simplifying Transformations for a Family of Elastic Metrics ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Su, Zhe Bauer, Martin Klassen, Eric Gallivan, Kyle Florida State Univ Dept Math Tallahassee FL 32306 USA
We define a new representation for immersed surfaces in R-3 by combining the SRNF and the induced surface metric. Using the L-2 metric on the space of SRNFs and the DeWitt metric on the space of surface metrics, we ob... 详细信息
来源: 评论
Recognizing handwritten mathematical expressions via paired dual loss attention network and printed mathematical expressions
Recognizing handwritten mathematical expressions via paired ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Anh Duc Le Ctr Open Data Humanities Tokyo Japan
recognition of Handwritten Mathematical Expressions (HMEs) is a challenging problem because of the complicated structure and uncommon math symbols contained in HMEs. Moreover, the lack of training data is a serious is... 详细信息
来源: 评论
Generalized Class Incremental Learning
Generalized Class Incremental Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mi, Fei Kong, Lingjing Lin, Tao Yu, Kaicheng Faltings, Boi Ecole Polytech Fed Lausanne EPFL Lausanne Switzerland
Many real-world machine learning systems require the ability to continually learn new knowledge. Class incremental learning receives increasing attention recently as a solution towards this goal. However, existing met... 详细信息
来源: 评论
VoronoiNet General Functional Approximators with Local Support
VoronoiNet General Functional Approximators with Local Suppo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Williams, Francis Parent-Levesque, Jerome Nowrouzezahrai, Derek Panozzo, Daniele Yi, Kwang Moo Tagliasacchi, Andrea NYU New York NY 10003 USA McGill Univ Montreal PQ Canada Univ Victoria Victoria BC Canada Google Brain Mountain View CA USA
Voronoi diagrams are highly compact representations that are used in various Graphics applications. In this work, we show how to embed a differentiable version of it - via a novel deep architecture - into a generative... 详细信息
来源: 评论
Class-Balanced Training for Deep Face recognition
Class-Balanced Training for Deep Face Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yaobin Deng, Weihong Beijing Univ Posts & Telecommun Beijing Peoples R China
The performance of deep face recognition depends heavily on the training data. Recently, larger and larger datasets have been developed for the training of deep models. However, most face recognition training sets suf... 详细信息
来源: 评论
End-to-end Optimized Video Compression with MV-Residual Prediction
End-to-end Optimized Video Compression with MV-Residual Pred...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, XiangJi Zhang, Ziwen Feng, Jie Zhou, Lei Wu, Junmin Tucodec Inc Shanghai Peoples R China
We present an end-to-end trainable framework for P-frame compression in this paper. A joint motion vector (MV) and residual prediction network MV-Residual is designed to extract the ensembled features of motion repres... 详细信息
来源: 评论
CPARR: Category-based Proposal Analysis for Referring Relationships
CPARR: Category-based Proposal Analysis for Referring Relati...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Chuanzi Zhu, Haidong Gao, Jiyang Chen, Kan Nevatia, Ram Univ Southern Calif Los Angeles CA 90007 USA
The task of referring relationships is to localize subject and object entities in an image satisfying a relationship query, which is given in the form of . This requires simultaneous localization of the subject and ob... 详细信息
来源: 评论
ePillID Dataset: A Low-Shot Fine-Grained Benchmark for Pill Identification
ePillID Dataset: A Low-Shot Fine-Grained Benchmark for Pill ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Usuyama, Naoto Delgado, Natalia Larios Hall, Amanda K. Lundin, Jessica Microsoft Healthcare Redmond WA 98052 USA Microsoft Redmond WA USA
Identifying prescription medications is a frequent task for patients and medical professionals;however, this is an error-prone task as many pills have similar appearances (e.g. white round pills), which increases the ... 详细信息
来源: 评论