咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1091-1100 订阅
排序:
SmallBigNet: Integrating Core and Contextual Views for Video Classification
SmallBigNet: Integrating Core and Contextual Views for Video...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu Chinese Acad Sci Shenzhen Inst Adv Technol ShenZhen Key Lab Comp Vis & Pattern Recognit SIAT SenseTime Joint Lab Shenzhen Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc SIAT Branch Shenzhen Peoples R China
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Joint Learning of Blind Video Denoising and Optical Flow Estimation
Joint Learning of Blind Video Denoising and Optical Flow Est...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yu, Songhyun Park, Bumjun Park, Junwoo Jeong, Jechang Hanyang Univ Seoul South Korea Korea Adv Inst Sci & Technol Daejeon South Korea
Many deep-learning-based image/video denoising models have been developed, and recently, several approaches for training a denoising neural network without using clean images have been proposed. However, Noise2Noise m... 详细信息
来源: 评论
Mimic The Raw Domain: Accelerating Action recognition in the Compressed Domain
Mimic The Raw Domain: Accelerating Action Recognition in the...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Battash, Barak Barad, Haim Tang, Hanlin Bleiweiss, Amit Intel Haifa Israel Intel Labs San Francisco CA USA
Video understanding usually requires expensive computation that prohibits its deployment, yet videos contain significant spatiotemporal redundancy that can be exploited. In particular, operating directly on the motion... 详细信息
来源: 评论
Densely Self-guided Wavelet Network for Image Denoising
Densely Self-guided Wavelet Network for Image Denoising
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Wei Yan, Qiong Zhao, Yuzhi SenseTime Res Hong Kong Peoples R China Harbin Inst Technol Harbin Heilongjiang Peoples R China City Univ Hong Kong Hong Kong Peoples R China
During the past years, deep convolutional neural networks have achieved impressive success in image denoising. In this paper, we propose a densely self-guided wavelet network (DSWN) for real-world image denoising. The... 详细信息
来源: 评论
An Analytical Framework for Trusted Machine Learning and computer vision Running with Blockchain
An Analytical Framework for Trusted Machine Learning and Com...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Tao Du, Maggie Wu, Xinmin He, Taiping SAS Inst Inc Cary NC 27513 USA
Machine learning algorithms often use data from databases that are mutable;therefore, the data and the results of machine learning cannot be fully trusted. Also, the learning process is often difficult to automate. A ... 详细信息
来源: 评论
Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches
Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Agarwal, Shruti Farid, Hany Fried, Ohad Agrawala, Maneesh Univ Calif Berkeley Berkeley CA 94720 USA Stanford Univ Stanford CA 94305 USA
Recent advances in machine learning and computer graphics have made it easier to convincingly manipulate video and audio. These so-called deep-fake videos range from complete full-face synthesis and replacement (face-... 详细信息
来源: 评论
Foreword to the Special Issue on computer vision-Based Approaches for Earth Observation
收藏 引用
ieee JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2020年 13卷 6515-6518页
作者: Tuia, Devis Hansch, Ronny Yokoya, Naoto Brown, Myron Le Saux, Bertrand EPFL Valais CH-1950 Sion Switzerland German Aerosp Ctr D-82234 Wessling Germany Univ Tokyo Tokyo 1138654 Japan RIKEN Ctr Adv Intelligence Project Tokyo 1030027 Japan Johns Hopkins Univ Appl Phys Lab Laurel MD 11100 USA European Space Res Inst & Lab European Space Agcy I-00044 Frascati Italy
The five papers in this special section focus on computer vision-based approaches for Earth observation. These papers followed a series of events promoting works at the interface between computer vision and remote sen... 详细信息
来源: 评论
Bilinear Parameterization For Differentiable Rank-Regularization
Bilinear Parameterization For Differentiable Rank-Regulariza...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ornhag, Marcus Valtonen Olsson, Carl Heyden, Anders Lund Univ Ctr Math Sci Lund Sweden Chalmers Univ Technol Dept Elect Engn Gothenburg Sweden
Low rank approximation is a commonly occurring problem in many computer vision and machine learning applications. There are two common ways of optimizing the resulting models. Either the set of matrices with a given r... 详细信息
来源: 评论
DNDNet: Reconfiguring CNN for Adversarial Robustness
DNDNet: Reconfiguring CNN for Adversarial Robustness
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Goel, Akhil Agarwal, Akshay Vatsa, Mayank Singh, Richa Ratha, Nalini K. IIIT Delhi Delhi India IIT Jodhpur Jodhpur Rajasthan India IBM TJ Watson Res Ctr Yorktown Hts NY USA
Several successful adversarial attacks have demonstrated the vulnerabilities of deep learning algorithms. These attacks are detrimental in building deep learning based dependable AI applications. Therefore, it is impe... 详细信息
来源: 评论
Discriminant Distribution-Agnostic Loss for Facial Expression recognition in the Wild
Discriminant Distribution-Agnostic Loss for Facial Expressio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Farzaneh, Amir Hossein Qi, Xiaojun Utah State Univ Dept Comp Sci Logan UT 84322 USA
Facial Expression recognition (FER) has demonstrated remarkable progress due to the advancement of deep Convolutional Neural Networks (CNNs). FER's goal as a visual recognition problem is to learn a mapping from t... 详细信息
来源: 评论