咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1121-1130 订阅
排序:
Semi-Supervised Hyperspectral Object Detection Challenge Results - PBVS 2022
Semi-Supervised Hyperspectral Object Detection Challenge Res...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Aneesh Rangnekar Zachary Mulhollan Anthony Vodacek Matthew Hoffman Angel Sappa Erik Blasch Jun Yu Liwen Zhang Shenshen Du Hao Chang Keda Lu Zhong Zhang Fang Gao Ye Yu Feng Shuang Lei Wang Qiang Ling Pranjay Shyam Kuk-Jin Yoon Kyung-Soo Kim Rochester Institute of Technology Rochester NY USA ESPOL Polytechnic University Guayaquil Ecuador Computer Vision Center Campus UAB Barcelona Spain US Air Force Research Lab Rome NY
This paper summarizes the top contributions to the first semi-supervised hyperspectral object detection (SSHOD) challenge, which was organized as a part of the Perception Beyond the Visible Spectrum (PBVS) 2022 worksh... 详细信息
来源: 评论
A Geometric ConvNet on 3D Shape Manifold for Gait recognition
A Geometric ConvNet on 3D Shape Manifold for Gait Recognitio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hosni, Nadia Ben Amor, Boulbaba Univ Manouba CRISTAL Manouba Tunisia Univ Lille CNRS 9189 IMT Lille Douai CRIStAL Lille France Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates
In this work we propose a geometric deep convolutional auto-encoder (DCAE) for the purpose of gait recognition by analyzing time-varying 3D skeletal data. Sequences are viewed as time-parameterized trajectories on the... 详细信息
来源: 评论
AI City Challenge 2020-computer vision for Smart Transportation Applications
AI City Challenge 2020-Computer Vision for Smart Transportat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chang, Ming-Ching Chiang, Chen-Kuo Tsai, Chun-Ming Chang, Yun-Kai Chiang, Hsuan-Lun Wang, Yu-An Chang, Shih-Ya Li, Yun-Lun Tsai, Ming-Shuin Tseng, Hung-Yu SUNY Albany Albany NY 12222 USA Natl Chung Cheng Univ Minxiong Taiwan Univ Taipei Taipei Taiwan
We present methods developed in our participation of the AI City 2020 Challenge (AIC20) and report evaluation results in this contest. With the blooming of AI computer vision techniques, vehicle detection, tracking, i... 详细信息
来源: 评论
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images
PI-Net: A Deep Learning Approach to Extract Topological Pers...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Som, Anirudh Choi, Hongjun Ramamurthy, Karthikeyan Natesan Buman, Matthew P. Turaga, Pavan Arizona State Univ Sch Arts Media & Engn Tempe AZ 85287 USA Arizona State Univ Sch Elect Comp & Energy Engn Tempe AZ 85287 USA IBM Res Albany NY USA Arizona State Univ Coll Hlth Solut Tempe AZ 85287 USA
Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is ... 详细信息
来源: 评论
Trident Dehazing Network
Trident Dehazing Network
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jing Wu, Haiyan Xie, Yuan Qu, Yanyun Ma, Lizhuang East China Normal Univ Sch Comp Sci & Technol Shanghai Peoples R China Xiamen Univ Sch Informat Sci & Engn Xiamen Fujian Peoples R China
Most existing dehazing methods are not robust to nonhomogeneous haze. Meanwhile, the information of dense haze region is usually unknown and hard to estimate, leading to blurry in dehaze result for those regions. Focu... 详细信息
来源: 评论
Dynamic Inference: A New Approach Toward Efficient Video Action recognition
Dynamic Inference: A New Approach Toward Efficient Video Act...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Wenhao He, Dongliang Tan, Xiao Chen, Shifeng Yang, Yi Wen, Shilei Chinese Acad Sci Shenzhen Inst Adv Technol MMLab Beijing Peoples R China Baidu Inc Dept Comp Vis Technol Vis Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Univ Technol Sydney Sydney NSW Australia Baidu Beijing Peoples R China
Though action recognition in videos has achieved great success recently, it remains a challenging task due to the massive computational cost. Designing lightweight networks is a possible solution, but it may degrade t... 详细信息
来源: 评论
Learning Sparse Neural Networks Through Mixture-Distributed Regularization
Learning Sparse Neural Networks Through Mixture-Distributed ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Chang-Ti Chen, Jun-Cheng Wu, Ja-Ling Natl Taiwan Univ Taipei Taiwan Acad Sinica Taipei Taiwan
L-0-norm regularization is one of the most efficient approaches to learn a sparse neural network. Due to its discrete nature, differentiable and approximate regularizations based on the concrete distribution [31] or i... 详细信息
来源: 评论
Thermal Image Super-Resolution Challenge - PBVS 2020
Thermal Image Super-Resolution Challenge - PBVS 2020
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rivadeneira, Rafael E. Sappa, Angel D. Vintimilla, Boris X. Guo, Lin Hou, Jiankun Mehri, Armin Behjati Ardakani, Parichehr Patel, Heena Chudasama, Vishal Prajapati, Kalpesh Upla, Kishor P. Ramachandra, Raghavendra Raja, Kiran Busch, Christoph Almasri, Feras Debeir, Olivier Nathan, Sabari Kansal, Priya Gutierrez, Nolan Mojra, Bardia Beksi, William J. ESPOL Escuela Super Politecn Litoral CIDIS Fac Ingn Elect & Comp 30-5 Via PerimetralPOB 09-01-5863 Guayaquil Ecuador Comp Vis Ctr Campus UAB Barcelona 08193 Spain Oklahoma State Univ Stillwater OK 74078 USA SVNIT Surat India NTNU Gjovik Norway Univ Libre Bruxelles Brussels Belgium Couger Inc Tokyo Japan Univ Texas Arlington Dept Comp Sci & Engn Robot Vis Lab Arlington TX 76019 USA
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR), which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this chal... 详细信息
来源: 评论
FoNet: A Memory-efficient Fourier-based Orthogonal Network for Object recognition
FoNet: A Memory-efficient Fourier-based Orthogonal Network f...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Feng Uyen Trang Nguyen Jiang, Hui York Univ Dept Elect Engn & Comp Sci 4700 Keele St Toronto ON M3J 1P3 Canada
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with the increasing depth of the network, which is a major constraint for efficient network training and inference on moder... 详细信息
来源: 评论
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution:...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Kai Gu, Shuhang Timofte, Radu Shang, Taizhang Dai, Qiuju Zhu, Shengchen Yang, Tong Guo, Yandong Jo, Younghyun Yang, Sejong Kim, Seon Joo Zha, Lin Jiang, Jiande Gao, Xinbo Lu, Wen Liu, Jing Yoon, Kwangjin Jeon, Taegyun Akita, Kazutoshi Ooba, Takeru Ukita, Norimichi Luo, Zhipeng Yao, Yuehan Xu, Zhenyu He, Dongliang Wu, Wenhao Ding, Yukang Li, Chao Li, Fu Wen, Shilei Li, Jianwei Yang, Fuzhi Yang, Huan Fu, Jianlong Kim, Byung-Hoon Baek, JaeHyun Ye, Jong Chul Fan, Yuchen Huang, Thomas S. Lee, Junyeop Lee, Bokyeung Min, Jungki Kim, Gwantae Lee, Kanghyu Park, Jaihyun Mykhailych, Mykola Zhong, Haoyu Shi, Yukai Yang, Xiaojun Yang, Zhijing Lin, Liang Zhao, Tongtong Peng, Jinjia Wang, Huibing Jin, Zhi Wu, Jiahao Chen, Yifu Shang, Chenming Zhang, Huanrong Min, Jeongki Hrishikesh, P. S. Puthussery, Densen Jiji, C., V Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland OPPO Res Dongguan Guangdong Peoples R China Yonsei Univ Seoul South Korea Facebook Menlo Pk CA USA Qingdao Hiimage Technol Co Ltd Hisense Visual Technol Co Ltd Qingdao Peoples R China Xidian Univ Xian Peoples R China East China Normal Univ ECNU Multimedia & Comp Vis Lab Shanghai Peoples R China SI Analyt Co Ltd 441 Expo Ro Daejeon 34051 South Korea Toyota Technol Inst TTI Toyota Japan DeepBlue Technol Shanghai Co Ltd Shanghai Peoples R China Baidu Inc Dept Comp Vis Technol VIS Beijing Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Peking Univ Beijing Peoples R China Founder Grp State Key Lab Digital Publishing Technol Beijing Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Microsoft Res Beijing Peoples R China Korea Adv Inst Sci & Technol KAIST Daejeon South Korea Amazon Web Serv Seattle WA USA Univ Illinois Champaign IL USA Korea Univ Seoul South Korea Wix Com Ltd Tel Aviv Israel Guangdong Univ Technol Guangzhou Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Dalian Maritime Univ Dalian Peoples R China Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou Peoples R China Coll Engn Trivandrum Trivandrum Kerala India
This paper reviews the NTIRE 2020 challenge on perceptual extreme super-resolution with focus on proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor x16 b... 详细信息
来源: 评论