咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1131-1140 订阅
排序:
Bifuse: Monocular 360◦ depth estimation via bi-projection fusion
Bifuse: Monocular 360◦ depth estimation via bi-projection f...
收藏 引用
2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
作者: Wang, Fu-En Yeh, Yu-Hsuan Sun, Min Chiu, Wei-Chen Tsai, Yi-Hsuan National Tsing Hua University Taiwan National Chiao Tung University Taiwan ASUS AICS Department NEC Labs America MOST Joint Research Center for AI Technology and All Vista Healthcare
Depth estimation from a monocular 360◦ image is an emerging problem that gains popularity due to the availability of consumer-level 360◦ cameras and the complete surrounding sensing capability. While the standard of 3... 详细信息
来源: 评论
MAGSAC++, a fast, reliable and accurate robust estimator
MAGSAC++, a fast, reliable and accurate robust estimator
收藏 引用
2020 ieee/CVF conference on computer vision and pattern recognition, cvpr 2020
作者: Barath, Daniel Noskova, Jana Ivashechkin, Maksym Matas, Jiri Visual Recognition Group Department of Cybernetics Czech Technical University Prague Czech Republic Machine Perception Research Laboratory MTA SZTAKI Budapest Hungary
We propose MAGSAC++ and Progressive NAPSAC sampler, P-NAPSAC in short. In MAGSAC++, we replace the model quality and polishing functions of the original method by an iteratively re-weighted least-squares fitting with ... 详细信息
来源: 评论
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Metho...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Abdelhamed, Abdelrahman Afifi, Mahmoud Timofte, Radu Brown, Michael S. Cao, Yue Zhang, Zhilu Zuo, Wangmeng Zhang, Xiaoling Liu, Jiye Chen, Wendong Wen, Changyuan Liu, Meng Lv, Shuailin Zhang, Yunchao Pan, Zhihong Li, Baopu Xi, Teng Fan, Yanwen Yu, Xiyu Zhang, Gang Liu, Jingtuo Han, Junyu Ding, Errui Yu, Songhyun Park, Bumjun Jeong, Jechang Liu, Shuai Zong, Ziyao Nan, Nan Li, Chenghua Yang, Zengli Bao, Long Wang, Shuangquan Bai, Dongwoon Lee, Jungwon Kim, Youngjung Rho, Kyeongha Shin, Changyeop Kim, Sungho Tang, Pengliang Zhao, Yiyun Zhou, Yuqian Fan, Yuchen Huang, Thomas Li, Zhihao Shah, Nisarg A. Liu, Wei Yan, Qiong Zhao, Yuzhi Mozejko, Marcin Latkowski, Tomasz Treszczotko, Lukasz Szafraniuk, Michal Trojanowski, Krzysztof Wu, Yanhong Michelini, Pablo Navarrete Hu, Fengshuo Lu, Yunhua Kim, Sujin Kim, Wonjin Lee, Jaayeon Choi, Jang-Hwan Zhussip, Magauiya Khassenov, Azamat Kim, Jong Hyun Cho, Hwechul Kansal, Priya Nathan, Sabari Ye, Zhangyu Lu, Xiwen Wu, Yaqi Yang, Jiangxin Cao, Yanlong Tang, Siliang Cao, Yanpeng Maggioni, Matteo Marras, Ioannis Tanay, Thomas Slabaugh, Gregory Yan, Youliang Kang, Myungjoo Choi, Han-Soo Song, Kyungmin Xu, Shusong Lu, Xiaomu Wang, Tingniao Lei, Chunxia Liu, Bin Gupta, Rajat Kumar, Vineet York Univ York N Yorkshire England Swiss Fed Inst Technol Zurich Switzerland Harbin Inst Technol Harbin Peoples R China Huawei Shenzhen Peoples R China Baidu Res Seattle WA USA Baidu Inc Dept Comp Vis Technol VIS Beijing Peoples R China Hanyang Univ Seoul South Korea North China Univ Technol Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Samsung Semicond Inc San Jose CA USA Agcy Def Dev Seoul South Korea Beijing Univ Posts & Telecommun Beijing Peoples R China Univ Illinois Champaign IL USA Nanjing Univ Nanjing Peoples R China Indian Inst Technol Jodhpur Rajasthan India SenseTime Res Hong Kong Peoples R China TCL Res Europe Warsaw Poland BOE Artificial Intelligence & Big Data Res Inst Beijing Peoples R China Seoul Natl Univ Seoul South Korea ST Unitas Seoul South Korea Ewha Womans Univ Seoul South Korea Couger Inc Tokyo Japan Zhejiang Univ Hangzhou Peoples R China Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China Harbin Inst Technol Shenzhen Shenzhen Peoples R China Huawei Technol Res & Dev UK Ltd Noahs Ark Lab London London England Dahua Technol Hangzhou Peoples R China Indian Inst Technol Kharagpur Kharagpur W Bengal India
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challen... 详细信息
来源: 评论
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition Workshops (cvprW)
作者: Eduardo Pé rez-Pellitero Sibi Catley-Chandar Richard Shaw Aleš Leonardis Radu Timofte Zexin Zhang Cen Liu Yunbo Peng Yue Lin Gaocheng Yu Jin Zhang Zhe Ma Hongbin Wang Xiangyu Chen Xintao Wang Haiwei Wu Lin Liu Chao Dong Jiantao Zhou Qingsen Yan Song Zhang Weiye Chen Yuhang Liu Zhen Zhang Yanning Zhang Javen Qinfeng Shi Dong Gong Dan Zhu Mengdi Sun Guannan Chen Yang Hu Haowei Li Baozhu Zou Zhen Liu Wenjie Lin Ting Jiang Chengzhi Jiang Xinpeng Li Mingyan Han Haoqiang Fan Jian Sun Shuaicheng Liu Juan Marí n-Vega Michael Sloth Peter Schneider-Kamp Richard Rö ttger Chunyang Li Long Bao Gang He Ziyao Xu Li Xu Gen Zhan Ming Sun Xing Wen Junlin Li Jinjing Li Chenghua Li Ruipeng Gang Fangya Li Chenming Liu Shuang Feng Fei Lei Rui Liu Junxiang Ruan Tianhong Dai Wei Li Zhan Lu Hengyan Liu Peian Huang Guangyu Ren Yonglin Luo Chang Liu Qiang Tu Sai Ma Yizhen Cao Steven Tel Barthelemy Heyrman Dominique Ginhac Chul Lee Gahyeon Kim Seonghyun Park An Gia Vien Truong Thanh Nhat Mai Howoon Yoon Tu Vo Alexander Holston Sheir Zaheer Chan Y. Park Huawei Noah&#x2019 s Ark Laboratory ETH Z&#x00FC rich University of W&#x00FC rzburg
This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with cvpr 2022. This manuscri... 详细信息
来源: 评论
Implementation of an Anomalous Human Activity recognition System
收藏 引用
SN computer Science 2020年 第3期1卷 1-10页
作者: Shreyas, D.G. Raksha, S. Prasad, B.G. B. M. S. College of Engineering Bengaluru India
This paper brings to light one of the most prominent applications of human activity recognition which is the anomaly detection. Providing security to an individual is a major concern of any society today due to the co... 详细信息
来源: 评论
Proceedings of the ieee computer society conference on computer vision and pattern recognition
Proceedings of the IEEE Computer Society Conference on Compu...
收藏 引用
30th ieee conference on computer vision and pattern recognition, cvpr 2017
The proceedings contain 781 papers. The topics discussed include: exclusivity-consistency regularized multi-view subspace clustering;borrowing treasures from the wealthy: deep transfer learning through selective joint...
来源: 评论
WiCV 2019: The Sixth Women In computer vision Workshop  32
WiCV 2019: The Sixth Women In Computer Vision Workshop
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Amerini, Irene Balashova, Elena Ebrahimi, Sayna Leonard, Kathryn Nagrani, Arsha Salvador, Amaia Univ Florence Florence Italy Princeton Univ Princeton NJ 08544 USA Univ Calif Berkeley Berkeley CA USA Occident Coll Los Angeles CA USA Univ Oxford Oxford England Univ Politen Catalunya Barcelona Spain
In this paper we present the Women in computer vision Workshop - WiCV 2019, organized in conjunction with cvpr 2019. This event is meant for increasing the visibility and inclusion of women researchers in computer vis... 详细信息
来源: 评论
Isospectralization, or how to hear shape, style, and correspondence  32
Isospectralization, or how to hear shape, style, and corresp...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cosmo, Luca Panine, Mikhail Rampini, Arianna Ovsjanikov, Maks Bronstein, Michael M. Rodola, Emanuele Univ Venice Venice Italy Ecole Polytech Palaiseau France Sapienza Univ Rome Rome Italy USI Imperial Coll London London England
The question whether one can recover the shape of a geometric object from its Laplacian spectrum ('hear the shape of the drum') is a classical problem in spectral geometry with a broad range of implications an... 详细信息
来源: 评论
Non-local Meets Global: An Integrated Paradigm for Hyperspectral Denoising  32
Non-local Meets Global: An Integrated Paradigm for Hyperspec...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Wei Yao, Quanming Li, Chao Yokoya, Naoto Zhao, Qibin RIKEN AIP Tokyo Japan HKUST Hong Kong Peoples R China
Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) denoising. Unfortunately, while their denoising performance benefits little from more spectral band... 详细信息
来源: 评论
Recognizing Multi-Modal Face Spoofing with Face recognition Networks  32
Recognizing Multi-Modal Face Spoofing with Face Recognition ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Parkin, Aleksandr Grinchuk, Oleg VisionLabs Amsterdam Netherlands
Detecting spoofing attacks plays a vital role for deploying automatic face recognition for biometric authentication in applications such as access control, face payment, device unlock, etc. In this paper we propose a ... 详细信息
来源: 评论