咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1231-1240 订阅
排序:
I Know How You Feel: Emotion recognition with Facial Landmarks  31
I Know How You Feel: Emotion Recognition with Facial Landmar...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tautkute, Ivona Trzcinski, Tomasz Bielski, Adam Tooploox Wroclaw Poland Polish Japanese Acad Informat Technol Warsaw Poland Warsaw Univ Technol Warsaw Poland
Classification of human emotions remains an important and challenging task for many computer vision algorithms, especially in the era of humanoid robots which coexist with humans in their everyday life. Currently prop... 详细信息
来源: 评论
A Holistic Framework for Addressing the World using Machine Learning  31
A Holistic Framework for Addressing the World using Machine ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Demir, Ilke Hughes, Forest Raj, Aman Dhruv, Kaunil Raskar, Ramesh Muddala, Suryanarayana Murthy Garg, Sanyam Doo, Barrett Facebook Menlo Pk CA 94025 USA MIT Media Lab Cambridge MA 02139 USA
Millions of people are disconnected from basic services due to lack of adequate addressing. We propose an automatic generative algorithm to create street addresses from satellite imagery. Our addressing scheme is cohe... 详细信息
来源: 评论
Cross-domain fashion image retrieval  31
Cross-domain fashion image retrieval
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gajic, Bojana Baldrich, Ramon Univ Autonoma Barcelona Comp Vis Ctr Edifici O UAB Bellaterra Spain
Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image o... 详细信息
来源: 评论
DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images  31
DeepGlobe 2018: A Challenge to Parse the Earth through Satel...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Demir, Ilke Koperski, Krzysztof Lindenbaum, David Pang, Guan Huang, Jing Bast, Saikat Hughes, Forest Tuia, Devis Raskar, Ramesh Facebook Menlo Pk CA 94025 USA DigitalGlobe Westminster CO USA CosmiQ Works Burnaby BC Canada Wageningen Univ Wageningen Netherlands MIT Media Lab Cambridge MA 02139 USA
We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images (Figure 1). Similar to other ch... 详细信息
来源: 评论
Active vision Dataset Benchmark  31
Active Vision Dataset Benchmark
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ammirato, Phil Berg, Alexander C. Kosecka, Jana Univ N Carolina Chapel Hill NC 27514 USA George Mason Univ Fairfax VA 22030 USA
Several recent efforts in computer vision indicate a trend toward studying and understanding problems in larger scale environments, beyond single images, and focus on connections to tasks in navigation, mobile manipul... 详细信息
来源: 评论
New Techniques for Preserving Global Structure and Denoising with Low Information Loss in Single-Image Super-Resolution  31
New Techniques for Preserving Global Structure and Denoising...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bei, Yijie Damian, Alex Hu, Shijia Menon, Sachit Ravi, Nikhil Rudin, Cynthia Duke Univ Durham NC 27706 USA
This work identifies and addresses two important technical challenges in single-image super-resolution: (1) how to upsample an image without magnifying noise and (2) how to preserve large scale structure when upsampli... 详细信息
来源: 评论
NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation  31
NU-Net: Deep Residual Wide Field of View Convolutional Neura...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Samy, Mohamed Amer, Karim Eissa, Kareem Shaker, Mahmoud ElHelw, Mohamed Nile Univ Ctr Informat Sci Giza Egypt
Semantic Segmentation of satellite images is one of the most challenging problems in computer vision as it requires a model capable of capturing both local and global information at each pixel. Current state of the ar... 详细信息
来源: 评论
SAM: Pushing the Limits of Saliency Prediction Models  31
SAM: Pushing the Limits of Saliency Prediction Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cornia, Marcella Baraldi, Lorenzo Serra, Giuseppe Cmcidara, Rita Univ Modena & Reggio Emilia Modena Italy Univ Udine Udine Italy
The prediction of human eye fixations has been recently gaining a lot of attention thanks to the improvements shown by deep architectures. In our work, we go beyond classical feed-forward networks to predict saliency ... 详细信息
来源: 评论
Towards CNN map representation and compression for camera relocalisation  31
Towards CNN map representation and compression for camera re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Contreras, Luis Mayol-Cuevas, Walterio Univ Bristol Dept Comp Sci Bristol Avon England
This paper presents a study on the use of Convolutional Neural Networks for camera relocalisation and its application to map compression. We follow state of the art visual relocalisation results and evaluate the respo... 详细信息
来源: 评论
Encapsulating the impact of transfer learning, domain knowledge and training strategies in deep-learning based architecture: A biometric based case study  31
Encapsulating the impact of transfer learning, domain knowle...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Singh, Avantika Nigam, Aditya Indian Inst Technol Mandi Mandi India
In this paper, efforts have been made to analyze the impact of training strategies, transfer learning and domain knowledge on two biometric-based problems namely: three class oculus classification and fingerprint sens... 详细信息
来源: 评论