咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 552 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 501 篇 shape
  • 441 篇 object recogniti...
  • 438 篇 robustness
  • 385 篇 humans
  • 335 篇 feature extracti...
  • 315 篇 training
  • 303 篇 object detection
  • 257 篇 application soft...
  • 257 篇 image recognitio...
  • 246 篇 lighting
  • 243 篇 image reconstruc...
  • 235 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 14 篇 computer science...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 29 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t. darrell
  • 19 篇 van gool luc
  • 18 篇 nayar shree k.
  • 18 篇 chellappa rama
  • 18 篇 t.s. huang
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 zisserman andrew
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 jain anil k.
  • 16 篇 r. szeliski
  • 15 篇 m. shah
  • 15 篇 p. perona

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1451-1460 订阅
排序:
Equiangular kernel dictionary learning with applications to dynamic texture analysis
Equiangular kernel dictionary learning with applications to ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Quan, Yuhui Bao, Chenglong Ji, Hui School of Computer Science and Engineering South China Univ. of Tech. Guangzhou510006 China Department of Mathematics National University of Singapore Singapore117542 Singapore
Most existing dictionary learning algorithms consider a linear sparse model, which often cannot effectively characterize the nonlinear properties present in many types of visual data, e.g. dynamic texture (DT). Such n... 详细信息
来源: 评论
Guaranteed outlier removal with mixed integer linear programs
Guaranteed outlier removal with mixed integer linear program...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Chin, Tat-Jun Kee, Yang Heng Eriksson, Anders Neumann, Frank School of Computer Science University of Adelaide Australia School of Electrical Engineering and Computer Science Queensland University of Technology Australia
The maximum consensus problem is fundamentally important to robust geometric fitting in computer vision. Solving the problem exactly is computationally demanding, and the effort required increases rapidly with the pro... 详细信息
来源: 评论
Actor-action semantic segmentation with grouping process models
Actor-action semantic segmentation with grouping process mod...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Xu, Chenliang Corso, Jason J. Electrical Engineering and Computer Science University of Michigan Ann Arbor United States
Actor-action semantic segmentation made an important step toward advanced video understanding: what action is happening; who is performing the action; and where is the action happening in space-time. Current methods b... 详细信息
来源: 评论
Real-time depth refinement for specular objects
Real-time depth refinement for specular objects
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: El, Roy Or Hershkovitz, Rom Wetzler, Aaron Rosman, Guy Bruckstein, Alfred M. Kimmel, Ron Technion Israel Institute of Technology Israel Computer Science and Artificial Intelligence Lab MIT Israel
The introduction of consumer RGB-D scanners set off a major boost in 3D computer vision research. Yet, the precision of existing depth scanners is not accurate enough to recover fine details of a scanned object. While... 详细信息
来源: 评论
End-to-end learning of action detection from frame glimpses in videos
End-to-end learning of action detection from frame glimpses ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Yeung, Serena Russakovsky, Olga Mori, Greg Fei-Fei, Li Stanford University United States Carnegie Mellon University United States Simon Fraser University United States
In this work we introduce a fully end-to-end approach for action detection in videos that learns to directly predict the temporal bounds of actions. Our intuition is that the process of detecting actions is naturally ... 详细信息
来源: 评论
Recognizing micro-actions and reactions from paired egocentric videos
Recognizing micro-actions and reactions from paired egocentr...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Yonetani, Ryo Kitani, Kris M. Sato, Yoichi University of Tokyo Tokyo Japan Carnegie Mellon University PittsburghPA United States
We aim to understand the dynamics of social interactions between two people by recognizing their actions and reactions using a head-mounted camera. Our work will impact several first-person vision tasks that need the ... 详细信息
来源: 评论
Direct prediction of 3D body poses from motion compensated sequences
Direct prediction of 3D body poses from motion compensated s...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Tekin, Bugra Rozantsev, Artem Lepetit, Vincent Fua, Pascal CVLab EPFL Lausanne Switzerland TU Graz Graz Austria
We propose an efficient approach to exploiting motion information from consecutive frames of a video sequence to recover the 3D pose of people. Previous approaches typically compute candidate poses in individual frame... 详细信息
来源: 评论
Incremental object discovery in time-varying image collections
Incremental object discovery in time-varying image collectio...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Kontogianni, Theodora Mathias, Markus Leibe, Bastian Visual Computing Institute Computer Vision Group RWTH Aachen University Germany
In this paper, we address the problem of object discovery in time-varying, large-scale image collections. A core part of our approach is a novel Limited Horizon Minimum Spanning Tree (LH-MST) structure that closely ap... 详细信息
来源: 评论
How far are we from solving pedestrian detection?
How far are we from solving pedestrian detection?
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Shanshan Benenson, Rodrigo Omran, Mohamed Hosang, Jan Schiele, Bernt Max Planck Institute for Informatics Saarbrücken Germany
Encouraged by the recent progress in pedestrian detection, we investigate the gap between current state-of-the-art methods and the "perfect single frame detector". We enable our analysis by creating a human ... 详细信息
来源: 评论
Event-specific image importance
Event-specific image importance
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Wang, Yufei Lin, Zhe Shen, Xiaohui Mch, Radomír Miller, Gavin Cottrell, Garrison W. University of California San Diego United States Adobe Research United States
When creating a photo album of an event, people typically select a few important images to keep or share. There is some consistency in the process of choosing the important images, and discarding the unimportant ones.... 详细信息
来源: 评论