咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1481-1490 订阅
排序:
Learning from the mistakes of others: Matching errors in cross-dataset learning
Learning from the mistakes of others: Matching errors in cro...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Sharmanska, Viktoriia Quadrianto, Novi SMiLe CLiNiC University of Sussex Brighton United Kingdom
Can we learn about object classes in images by looking at a collection of relevant 3D models? Or if we want to learn about human (inter-)actions in images, can we benefit from videos or abstract illustrations that sho... 详细信息
来源: 评论
3D shape attributes
3D shape attributes
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Fouhey, David F. Gupta, Abhinav Zisserman, Andrew Robotics Institute Carnegie Mellon University United States Dept. of Engineering Science University of Oxford United Kingdom
In this paper we investigate 3D attributes as a means to understand the shape of an object in a single image. To this end, we make a number of contributions: (i) we introduce and define a set of 3D Shape attributes, i... 详细信息
来源: 评论
Using self-contradiction to learn confidence measures in stereo vision
Using self-contradiction to learn confidence measures in ste...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Mostegel, Christian Rumpler, Markus Fraundorfer, Friedrich Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria
Learned confidence measures gain increasing importance for outlier removal and quality improvement in stereo vision. However, acquiring the necessary training data is typically a tedious and time consuming task that i... 详细信息
来源: 评论
The MegaFace benchmark:1 million faces for recognition at scale
The MegaFace benchmark:1 million faces for recognition at sc...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Kemelmacher-Shlizerman, Ira Seitz, Steven M. Miller, Daniel Brossard, Evan Department of Computer Science and Engineering University of Washington United States
Recent face recognition experiments on a major benchmark (LFW [15]) show stunning performance-a number of algorithms achieve near to perfect score, surpassing human recognition rates. In this paper, we advocate evalua... 详细信息
来源: 评论
Coordinating multiple disparity proposals for stereo computation
Coordinating multiple disparity proposals for stereo computa...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Li, Ang Chen, Dapeng Liu, Yuanliu Yuan, Zejian Xi'an Jiaotong University China
While great progress has been made in stereo computation over the last decades, large textureless regions remain challenging. Segment-based methods can tackle this problem properly, but their performances are sensitiv... 详细信息
来源: 评论
Deepfashion: Powering robust clothes recognition and retrieval with rich annotations
Deepfashion: Powering robust clothes recognition and retriev...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Liu, Ziwei Luo, Ping Qiu, Shi Wang, Xiaogang Tang, Xiaoou Chinese University of Hong Kong Hong Kong SenseTime Group Limited China Shenzhen Institutes of Advanced Technology CAS China
Recent advances in clothes recognition have been driven by the construction of clothes datasets. Existing datasets are limited in the amount of annotations and are difficult to cope with the various challenges in real... 详细信息
来源: 评论
Multi-oriented text detection with fully convolutional networks
Multi-oriented text detection with fully convolutional netwo...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Zheng Zhang, Chengquan Shen, Wei Yao, Cong Liu, Wenyu Bai, Xiang School of Electronic Information and Communications Huazhong University of Science and Technology China Key Laboratory of Specialty Fiber Optics and Optical Access Networks Shanghai University China
In this paper, we propose a novel approach for text detection in natural images. Both local and global cues are taken into account for localizing text lines in a coarse-to-fine procedure. First, a Fully Convolutional ... 详细信息
来源: 评论
A dual-source approach for 3D pose estimation from a single image
A dual-source approach for 3D pose estimation from a single ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Yasin, Hashim Iqbal, Umar Krüger, Björn Weber, Andreas Gall, Juergen Multimedia Simulation Virtual Reality Group University of Bonn Germany Computer Vision Group University of Bonn Germany Gokhale Method Institute Stanford United States
One major challenge for 3D pose estimation from a single RGB image is the acquisition of sufficient training data. In particular, collecting large amounts of training data that contain unconstrained images and are ann... 详细信息
来源: 评论
Convolutional networks for shape from light field
Convolutional networks for shape from light field
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Heber, Stefan Pock, Thomas Graz University of Technology Austria Austrian Institute of Technology Austria
Convolutional Neural Networks (CNNs) have recently been successfully applied to various computer vision (CV) applications. In this paper we utilize CNNs to predict depth information for given Light Field (LF) data. Th... 详细信息
来源: 评论
Efficient deep learning for stereo matching
Efficient deep learning for stereo matching
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Luo, Wenjie Schwing, Alexander G. Urtasun, Raquel Department of Computer Science University of Toronto Canada
In the past year, convolutional neural networks have been shown to perform extremely well for stereo estimation. However, current architectures rely on siamese networks which exploit concatenation followed by further ... 详细信息
来源: 评论