咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,445 篇 英文
  • 4 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1541-1550 订阅
排序:
Latent embeddings for zero-shot classification
Latent embeddings for zero-shot classification
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Xian, Yongqin Akata, Zeynep Sharma, Gaurav Nguyen, Quynh Hein, Matthias Schiele, Bernt MPI for Informatics Germany IIT Kanpur India Saarland University Germany CSE Indian Institute of Technology Kanpur India
We present a novel latent embedding model for learning a compatibility function between image and class embeddings, in the context of zero-shot classification. The proposed method augments the state-of-the-art bilinea... 详细信息
来源: 评论
Online reconstruction of indoor scenes from RGB-D streams
Online reconstruction of indoor scenes from RGB-D streams
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Wang, Hao Wang, Jun Wang, Liang Baidu Research Institute of Deep Learning United States
A system capable of performing robust online volumetric reconstruction of indoor scenes based on input from a handheld RGB-D camera is presented. Our system is powered by a two-pass reconstruction scheme. The first pa... 详细信息
来源: 评论
Video-story composition via plot analysis
Video-story composition via plot analysis
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Choi, Jinsoo Oh, Tae-Hyun Kweon, In So KAIST Korea Republic of
We address the problem of composing a story out of multiple short video clips taken by a person during an activity or experience. Inspired by plot analysis of written stories, our method generates a sequence of video ... 详细信息
来源: 评论
Structured feature similarity with explicit feature map
Structured feature similarity with explicit feature map
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Kobayashi, Takumi National Institute of Advanced Industrial Science and Technology Umezono 1-1-1 Tsukuba Japan
Feature matching is a fundamental process in a variety of computer vision tasks. Beyond the standard L2 metric, various methods to measure similarity between features have been proposed mainly on the assumption that t... 详细信息
来源: 评论
Person re-identification by multi-channel parts-based CNN with improved triplet loss function
Person re-identification by multi-channel parts-based CNN wi...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Cheng, De Gong, Yihong Zhou, Sanping Wang, Jinjun Zheng, Nanning Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an Shaanxi China
Person re-identification across cameras remains a very challenging problem, especially when there are no overlapping fields of view between cameras. In this paper, we present a novel multi-channel parts-based convolut... 详细信息
来源: 评论
Actionness estimation using hybrid fully convolutional networks
Actionness estimation using hybrid fully convolutional netwo...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Wang, Limin Qiao, Yu Tang, Xiaoou Van Gool, Luc Shenzhen Key Lab of Comp. Vis. and Pat. Rec. Shenzhen Institutes of Advanced Technology CAS China Department of Information Engineering Chinese University of Hong Kong Hong Kong Computer Vision Lab ETH Zurich Switzerland
Actionness [3] was introduced to quantify the likelihood of containing a generic action instance at a specific location. Accurate and efficient estimation of actionness is important in video analysis and may benefit o... 详细信息
来源: 评论
ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels
ASP vision: Optically computing the first layer of convoluti...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Chen, Huaijin G. Jayasuriya, Suren Yang, Jiyue Stephen, Judy Sivaramakrishnan, Sriram Veeraraghavan, Ashok Molnar, Alyosha Rice University United States Cornell University United States
Deep learning using convolutional neural networks (CNNs) is quickly becoming the state-of-the-art for challenging computer vision applications. However, deep learning's power consumption and bandwidth requirements... 详细信息
来源: 评论
WarpNet: Weakly supervised matching for single-view reconstruction
WarpNet: Weakly supervised matching for single-view reconstr...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Kanazawa, Angjoo Jacobs, David W. Chandraker, Manmohan University of Maryland College Park United States NEC Labs United States
We present an approach to matching images of objects in fine-grained datasets without using part annotations, with an application to the challenging problem of weakly supervised single-view reconstruction. This is in ... 详细信息
来源: 评论
Stereo matching with color and monochrome cameras in low-light conditions
Stereo matching with color and monochrome cameras in low-lig...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Jeon, Hae-Gon Lee, Joon-Young Im, Sunghoon Ha, Hyowon Kweon, In So Robotics and Computer Vision Lab. KAIST Korea Republic of Adobe Research United States
Consumer devices with stereo cameras have become popular because of their low-cost depth sensing capability. However, those systems usually suffer from low imaging quality and inaccurate depth acquisition under low-li... 详细信息
来源: 评论
Hedged deep tracking
Hedged deep tracking
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Qi, Yuankai Zhang, Shengping Qin, Lei Yao, Hongxun Huang, Qingming Lim, Jongwoo Yang, Ming-Hsuan Harbin Institute of Technology China Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Hanyang University China University of California at Merced United States
In recent years, several methods have been developed to utilize hierarchical features learned from a deep convolutional neural network (CNN) for visual tracking. However, as features from a certain CNN layer character... 详细信息
来源: 评论