咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,445 篇 英文
  • 4 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1581-1590 订阅
排序:
Learning deep representation for imbalanced classification
Learning deep representation for imbalanced classification
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Huang, Chen Li, Yining Loy, Chen Change Tang, Xiaoou Department of Information Engineering Chinese University of Hong Kong Hong Kong SenseTime Group Limited China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Data in vision domain often exhibit highly-skewed class distribution, i.e., most data belong to a few majority classes, while the minority classes only contain a scarce amount of instances. To mitigate this issue, con... 详细信息
来源: 评论
Large scale hard sample mining with Monte Carlo Tree Search
Large scale hard sample mining with Monte Carlo Tree Search
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Canévet, Olivier Fleuret, François Idiap Research Institut Switzerland Switzerland
We investigate an efficient strategy to collect false positives from very large training sets in the context of object detection. Our approach scales up the standard bootstrapping procedure by using a hierarchical dec... 详细信息
来源: 评论
Deep decision network for multi-class image classification
Deep decision network for multi-class image classification
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Murthy, Venkatesh N. Singh, Vivek Chen, Terrence Manmatha, R. Comaniciu, Dorin School of Computer Science University of Massachusetts AmherstMA United States Medical Imaging Technologies Siemens Healthcare PrincetonNJ United States
In this paper, we present a novel Deep Decision Network (DDN) that provides an alternative approach towards building an efficient deep learning network. During the learning phase, starting from the root network node, ... 详细信息
来源: 评论
Geometry-informed material recognition
Geometry-informed material recognition
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: DeGol, Joseph Golparvar-Fard, Mani Hoiem, Derek University of Illinois Urbana-Champaign United States
Our goal is to recognize material categories using images and geometry information. In many applications, such as construction management, coarse geometry information is available. We investigate how 3D geometry (surf... 详细信息
来源: 评论
Monocular 3D object detection for autonomous driving
Monocular 3D object detection for autonomous driving
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Chen, Xiaozhi Kundu, Kaustav Zhang, Ziyu Ma, Huimin Fidler, Sanja Urtasun, Raquel Department of Electronic Engineering Tsinghua University China Department of Computer Science University of Toronto Canada
The goal of this paper is to perform 3D object detection from a single monocular image in the domain of autonomous driving. Our method first aims to generate a set of candidate class-specific object proposals, which a... 详细信息
来源: 评论
Image question answering using convolutional neural network with dynamic parameter prediction
Image question answering using convolutional neural network ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Noh, Hyeonwoo Seo, Paul Hongsuck Han, Bohyung Department of Computer Science and Engineering POSTECH Korea Republic of
We tackle image question answering (ImageQA) problem by learning a convolutional neural network (CNN) with a dynamic parameter layer whose weights are determined adaptively based on questions. For the adaptive paramet... 详细信息
来源: 评论
Object Co-segmentation via graph optimized-flexible manifold ranking
Object Co-segmentation via graph optimized-flexible manifold...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Quan, Rong Han, Junwei Zhang, Dingwen Nie, Feiping School of Automation Center for OPTIMAL Northwestern Polytechnical University Xi'an710072 China School of Computer Science Center for OPTIMAL Northwestern Polytechnical University Xi'an710072 China
Aiming at automatically discovering the common objects contained in a set of relevant images and segmenting them as foreground simultaneously, object co-segmentation has become an active research topic in recent years... 详细信息
来源: 评论
Harnessing object and scene semantics for large-scale video understanding
Harnessing object and scene semantics for large-scale video ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Wu, Zuxuan Fu, Yanwei Jiang, Yu-Gang Sigal, Leonid Shanghai Key Lab of Intel. Info. Processing School of Computer Science Fudan University China Disney Research United States
Large-scale action recognition and video categorization are important problems in computer vision. To address these problems, we propose a novel object- and scene-based semantic fusion network and representation. Our ... 详细信息
来源: 评论
Deep exemplar 2D-3D detection by adapting from real to rendered views
Deep exemplar 2D-3D detection by adapting from real to rende...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Massa, Francisco Russell, Bryan C. Aubry, Mathieu ENPC Marne-la-ValleF-77455 France Adobe Research United States UC Berkeley United States
This paper presents an end-to-end convolutional neural network (CNN) for 2D-3D exemplar detection. We demonstrate that the ability to adapt the features of natural images to better align with those of CAD rendered vie... 详细信息
来源: 评论
Visual7W: Grounded question answering in images
Visual7W: Grounded question answering in images
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhu, Yuke Groth, Oliver Bernstein, Michael Fei-Fei, Li Computer Science Department Stanford University United States Computer Science Department Dresden University of Technology Germany
We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoni... 详细信息
来源: 评论