咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,445 篇 英文
  • 4 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是1661-1670 订阅
排序:
ReD-SFA: Relation discovery based slow feature analysis for trajectory clustering
ReD-SFA: Relation discovery based slow feature analysis for ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Zhang Huang, Kaiqi Tan, Tieniu Yang, Peipei Li, Jun CRIPAC NLPR Institute of Automation Chinese Academy of Sciences China Centre for Quantum Computation and Intelligent Systems University of Technology Sydney Australia
For spectral embedding/clustering, it is still an open problem on how to construct an relation graph to reflect the intrinsic structures in data. In this paper, we proposed an approach, named Relation Discovery based ... 详细信息
来源: 评论
Learning reconstruction-based remote gaze estimation
Learning reconstruction-based remote gaze estimation
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Yu, Pei Zhou, Jiahuan Wu, Ying Northwestern University 2145 Sheridan Road EvanstonIL60208 United States
It is a challenging problem to accurately estimate gazes from low-resolution eye images that do not provide fine and detailed features for eyes. Existing methods attempt to establish the mapping between the visual app... 详细信息
来源: 评论
Multi-view people tracking via hierarchical trajectory composition?
Multi-view people tracking via hierarchical trajectory compo...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Xu, Yuanlu Liu, Xiaobai Liu, Yang Zhu, Song-Chun United States United States
This paper presents a hierarchical composition approach for multi-view object tracking. The key idea is to adaptively exploit multiple cues in both 2D and 3D, e.g., ground occupancy consistency, appearance similarity,... 详细信息
来源: 评论
PSyCo: Manifold span reduction for super resolution
PSyCo: Manifold span reduction for super resolution
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Pérez-Pellitero, Eduardo Salvador, Jordi Ruiz-Hidalgo, Javier Rosenhahn, Bodo TNT Lab Leibniz Universität Hannover Germany Technicolor R and I Hannover Germany Image Processing Group Universitat Politècnica de Catalunya Spain
The main challenge in Super Resolution (SR) is to discover the mapping between the low- and high-resolution manifolds of image patches, a complex ill-posed problem which has recently been addressed through piecewise l... 详细信息
来源: 评论
Learning a discriminative null space for person re-identification
Learning a discriminative null space for person re-identific...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Zhang, Li Xiang, Tao Gong, Shaogang Queen Mary University of London United Kingdom
Most existing person re-identification (re-id) methods focus on learning the optimal distance metrics across camera views. Typically a person's appearance is represented using features of thousands of dimensions, ... 详细信息
来源: 评论
Solving small-piece jigsaw puzzles by growing consensus
Solving small-piece jigsaw puzzles by growing consensus
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Son, Kilho Moreno, Daniel Hays, James Cooper, David B. Brown University United States Georgia Institute of Technology United States
In this paper, we present a novel computational puzzle solver for square-piece image jigsaw puzzles with no prior information such as piece orientation, anchor pieces or resulting dimension of the puzzle. By "pie... 详细信息
来源: 评论
Unsupervised learning from narrated instruction videos
Unsupervised learning from narrated instruction videos
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Alayrac, Jean-Baptiste Bojanowski, Piotr Agrawal, Nishant Sivic, Josef Laptev, Ivan Lacoste-Julien, Simon WILLOW Project-Team Département d'Informatique de l'Ecole Normale Supérieure ENS/INRIA/CNRS UMR 8548 Paris France SIERRA Project-Team Département d'Informatique de l'Ecole Normale Supérieure ENS/INRIA/CNRS UMR 8548 Paris France IIIT Hyderabad India
We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First... 详细信息
来源: 评论
Globally optimal rigid intensity based registration: A fast fourier domain approach
Globally optimal rigid intensity based registration: A fast ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Nasihatkon, Behrooz Fejne, Frida Kahl, Fredrik Department of Signals and Systems Chalmers University of Technology Sweden Centre for Mathematical Sciences Lund University Sweden MedTech West Sweden
High computational cost is the main obstacle to adapting globally optimal branch-and-bound algorithms to intensity-based registration. Existing techniques to speed up such algorithms use a multiresolution pyramid of i... 详细信息
来源: 评论
A robust multilinear model learning framework for 3D faces
A robust multilinear model learning framework for 3D faces
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Bolkart, Timo Wuhrer, Stefanie Saarland University Germany Inria Grenoble Rhône-Alpes France
Multilinear models are widely used to represent the statistical variations of 3D human faces as they decouple shape changes due to identity and expression. Existing methods to learn a multilinear face model degrade if... 详细信息
来源: 评论
Modality and component aware feature fusion for RGB-D scene classification
Modality and component aware feature fusion for RGB-D scene ...
收藏 引用
2016 ieee conference on computer vision and pattern recognition, cvpr 2016
作者: Wang, Anran Cai, Jianfei Lu, Jiwen Cham, Tat-Jen School of Computer Engineering Nanyang Technological University Singapore Singapore Department of Automation Tsinghua University Beijing China
While convolutional neural networks (CNN) have been excellent for object recognition, the greater spatial variability in scene images typically meant that the standard full-image CNN features are suboptimal for scene ... 详细信息
来源: 评论