咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是411-420 订阅
排序:
Road detection with EOSResUNet and post vectorizing algorithm  31
Road detection with EOSResUNet and post vectorizing algorith...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Filin, Oleksandr Zapara, Anton Panchenko, Serhii EOS Data Analyt Menlo Pk CA 94027 USA
Object recognition on the satellite images is one of the most relevant and popular topics in the problem of pattern recognition. This was facilitated by many factors, such as a high number of satellites with high-reso... 详细信息
来源: 评论
Stacked U-Nets with Multi-Output for Road Extraction  31
Stacked U-Nets with Multi-Output for Road Extraction
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Tao Chen, Zehui Yang, Wenxiang Wang, Yin Tongji Univ Shanghai Peoples R China
With the recent advances of Convolutional Neural Networks (CNN) in computer vision, there have been rapid progresses in extracting roads and other features from satellite imagery for mapping and other purposes. In thi... 详细信息
来源: 评论
Elliptical head tracking using intensity gradients and color histograms
Elliptical head tracking using intensity gradients and color...
收藏 引用
1998 ieee computer-society conference on computer vision and pattern recognition
作者: Birchfield, S Stanford Univ Dept Comp Sci Stanford CA 94305 USA
An algorithm Sor tracking a person's head is presented. The head's projection onto the image plane is modeled as an ellipse whose position and size are continually updated by a local search combining the outpu... 详细信息
来源: 评论
Recognizing Multi-Modal Face Spoofing with Face recognition Networks  32
Recognizing Multi-Modal Face Spoofing with Face Recognition ...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Parkin, Aleksandr Grinchuk, Oleg VisionLabs Amsterdam Netherlands
Detecting spoofing attacks plays a vital role for deploying automatic face recognition for biometric authentication in applications such as access control, face payment, device unlock, etc. In this paper we propose a ... 详细信息
来源: 评论
U-Net based convolutional neural network for skeleton extraction  32
U-Net based convolutional neural network for skeleton extrac...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Panichev, Oleg Voloshyna, Alona Ciklum Amosova Str 12 Kiev Ukraine
Skeletonization is a process aimed to extract a line-like object shape representation, skeleton, which is of great interest for optical character recognition, shape-based object matching, recognition, biomedical image... 详细信息
来源: 评论
FaceBagNet: Bag-of-local-features Model for Multi-modal Face Anti-spoofing  32
FaceBagNet: Bag-of-local-features Model for Multi-modal Face...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Tao Huang, Yuyu Tong, Zhijun ReadSense Shanghai Peoples R China
Face anti-spoofing detection is a crucial procedure in biometric face recognition systems. State-of-the-art approaches, based on Convolutional Neural Networks (CNNs), present good results in this field. However, previ... 详细信息
来源: 评论
Spherical Embeddings for non-Euclidean Dissimilarities
Spherical Embeddings for non-Euclidean Dissimilarities
收藏 引用
23rd ieee conference on computer vision and pattern recognition (cvpr)
作者: Wilson, Richard C. Hancock, Edwin R. Pekalska, Elzbieta Duin, Robert P. W. Univ York Dept Comp Sci York YO10 5DD N Yorkshire England Univ Manchester Sch Comp Sci Manchester M13 9PL Lancs England Delft Univ Technol Fac Elect Engn Math & Comp Sci NL-2600 AA Delft Netherlands
Many computer vision and pattern recognition problems may be posed by defining a way of measuring dissimilarities between patterns. For many types of data, these dissimilarities are not Euclidean, and may not be metri... 详细信息
来源: 评论
A Smart Sensor with Hyperspectral/Range Fovea and Panoramic Peripheral View
A Smart Sensor with Hyperspectral/Range Fovea and Panoramic ...
收藏 引用
ieee-computer-society conference on computer vision and pattern recognition Workshops
作者: Wang, Tao Zhu, Zhigang Rhody, Harvey CUNY City Coll Dept Comp Sci 138th St & Convent Ave New York NY 10031 USA CUNY Dept Comp Sci New York NY 10016 USA Rochester Inst Technol Ctr Imaging Sci Rochester NY 14623 USA
We propose an adaptive and effective multimodal peripheral-fovea sensor design for real-time targets tracking. This design is inspired by the biological vision systems for achieving real-time target detection and reco... 详细信息
来源: 评论
Automatic hierarchical classification of silhouettes of 3D objects
Automatic hierarchical classification of silhouettes of 3D o...
收藏 引用
1998 ieee computer-society conference on computer vision and pattern recognition
作者: Gdalyahu, Y Weinshall, D Hebrew Univ Jerusalem Inst Comp Sci IL-91904 Jerusalem Israel
The organization of image databases can rely upon different aspects of image similarity. Here rue extract silhouettes from images of three dimensional objects, and rely upon curve similarity for image classification. ... 详细信息
来源: 评论
Deep Convolutional Neural Networks with Integrated Quadratic Correlation Filters for Automatic Target recognition  31
Deep Convolutional Neural Networks with Integrated Quadratic...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Millikan, Brian Foroosh, Hassan Sun, Qiyu Univ Cent Florida Dept Elect Engn & Comp Sci Orlando FL 32816 USA Univ Cent Florida Dept Math Orlando FL 32816 USA
Automatic target recognition involves detecting and recognizing potential targets automatically, which is widely used in civilian and military applications today. Quadratic correlation filters were introduced as two-c... 详细信息
来源: 评论