咨询与建议

限定检索结果

文献类型

  • 6,421 篇 会议
  • 25 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 6,448 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,849 篇 工学
    • 3,647 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 790 篇 光学工程
    • 302 篇 信息与通信工程
    • 242 篇 控制科学与工程
    • 219 篇 电气工程
    • 201 篇 机械工程
    • 80 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 64 篇 仪器科学与技术
    • 36 篇 建筑学
    • 33 篇 力学(可授工学、理...
    • 33 篇 土木工程
    • 33 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 18 篇 化学工程与技术
  • 1,453 篇 理学
    • 945 篇 物理学
    • 890 篇 数学
    • 352 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 38 篇 系统科学
    • 23 篇 化学
  • 160 篇 管理学
    • 110 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 112 篇 医学
    • 112 篇 临床医学
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 农学
  • 8 篇 教育学
  • 7 篇 艺术学
  • 6 篇 经济学
  • 2 篇 军事学

主题

  • 2,288 篇 computer vision
  • 789 篇 pattern recognit...
  • 637 篇 cameras
  • 629 篇 computer science
  • 568 篇 face recognition
  • 555 篇 layout
  • 510 篇 image segmentati...
  • 509 篇 conferences
  • 498 篇 shape
  • 445 篇 robustness
  • 439 篇 object recogniti...
  • 388 篇 humans
  • 332 篇 feature extracti...
  • 321 篇 training
  • 303 篇 object detection
  • 262 篇 image recognitio...
  • 257 篇 application soft...
  • 246 篇 lighting
  • 238 篇 image reconstruc...
  • 237 篇 computational mo...

机构

  • 41 篇 microsoft resear...
  • 26 篇 department of co...
  • 21 篇 swiss fed inst t...
  • 21 篇 school of comput...
  • 20 篇 department of co...
  • 19 篇 swiss fed inst t...
  • 19 篇 carnegie mellon ...
  • 18 篇 department of co...
  • 17 篇 department of in...
  • 17 篇 the robotics ins...
  • 17 篇 institute of com...
  • 16 篇 univ sci & techn...
  • 16 篇 robotics institu...
  • 15 篇 tsinghua univ pe...
  • 14 篇 department of el...
  • 14 篇 school of comput...
  • 14 篇 school of comput...
  • 13 篇 univ maryland co...
  • 13 篇 microsoft resear...
  • 13 篇 microsoft resear...

作者

  • 39 篇 timofte radu
  • 28 篇 s.k. nayar
  • 24 篇 huang thomas s.
  • 23 篇 xiaoou tang
  • 22 篇 t. kanade
  • 20 篇 t.s. huang
  • 19 篇 van gool luc
  • 19 篇 t. darrell
  • 19 篇 chellappa rama
  • 18 篇 nayar shree k.
  • 17 篇 a.k. jain
  • 17 篇 a. zisserman
  • 17 篇 jain anil k.
  • 16 篇 g. healey
  • 16 篇 torralba antonio
  • 16 篇 heung-yeung shum
  • 16 篇 zisserman andrew
  • 16 篇 l. van gool
  • 15 篇 m. shah
  • 15 篇 ji qiang

语言

  • 6,447 篇 英文
  • 2 篇 其他
检索条件"任意字段=1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1992"
6449 条 记 录,以下是551-560 订阅
排序:
H-Net: Unsupervised Attention-based Stereo Depth Estimation Leveraging Epipolar Geometry
H-Net: Unsupervised Attention-based Stereo Depth Estimation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Baoru Zheng, Jian-Qing Giannarou, Stamatia Elson, Daniel S. Imperial Coll London Hamlyn Ctr Robot Surg London England Univ Oxford Kennedy Inst Rheumatol Oxford England Univ Oxford Big Data Inst Oxford England
Depth estimation from a stereo image pair has become one of the most explored applications in computer vision, with most previous methods relying on fully supervised learning settings. However, due to the difficulty i... 详细信息
来源: 评论
Does Interference Exist When Training a Once-For-All Network?
Does Interference Exist When Training a Once-For-All Network...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shipard, Jordan Wiliem, Arnold Fookes, Clinton Queensland Univ Technol Signal Proc Artificial Intelligence & Vis Technol Brisbane Qld Australia Sentient Vis Syst Port Melbourne Vic Australia
The Once-For-All (OFA) method offers an excellent pathway to deploy a trained neural network model into multiple target platforms by utilising the supernet-subnet architecture. Once trained, a subnet can be derived fr... 详细信息
来源: 评论
Self-Supervised Learning to Guide Scientifically Relevant Categorization of Martian Terrain Images
Self-Supervised Learning to Guide Scientifically Relevant Ca...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Panambur, Tejas Chakraborty, Deep Meyer, Melissa Milliken, Ralph Learned-Miller, Erik Parente, Mario UMass Amherst Dept Elect & Comp Engn Amherst MA 01003 USA UMass Amherst Manning Coll Informat & Comp Sci Amherst MA 01003 USA Brown Univ Dept Earth Environm & Planetary Sci Providence RI 02912 USA
Automatic terrain recognition in Mars rover images is an important problem not just for navigation, but for scientists interested in studying rock types, and by extension, conditions of the ancient Martian paleoclimat... 详细信息
来源: 评论
Holistic Approach to Measure Sample-level Adversarial Vulnerability and its Utility in Building Trustworthy Systems
Holistic Approach to Measure Sample-level Adversarial Vulner...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Nayak, Gaurav Kumar Rawal, Ruchit Lal, Rohit Patil, Himanshu Chakraborty, Anirban Indian Inst Sci Bangalore Karnataka India
Adversarial attack perturbs an image with an imperceptible noise, leading to incorrect model prediction. Recently, a few works showed inherent bias associated with such attack (robustness bias), where certain subgroup... 详细信息
来源: 评论
Self-Supervised Voxel-Level Representation Rediscovers Subcellular Structures in Volume Electron Microscopy
Self-Supervised Voxel-Level Representation Rediscovers Subce...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Han, Hongqing Dmitrieva, Mariia Sauer, Alexander Tam, Ka Ho Rittscher, Jens Univ Oxford Inst Biomed Engn Dept Engn Sci Oxford England
Making sense of large volumes of biological imaging data without human annotation often relies on unsupervised representation learning. Although efforts have been made to representing cropped-out microscopy images of ... 详细信息
来源: 评论
A Lightweight Network for High Dynamic Range Imaging
A Lightweight Network for High Dynamic Range Imaging
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yan, Qingsen Zhang, Song Chen, Weiye Liu, Yuhang Zhang, Zhen Zhang, Yanning Shi, Javen Qinfeng Gong, Dong Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia Xidian Univ Sch Artificial Intelligence Xian Peoples R China Xidian Univ Guangzhou Inst Technol Xian Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia
Multi-frame high dynamic range (HDR) reconstruction methods try to expand the range of illuminance with differently exposed images. They suffer from ghost artifacts when camera jittering or object moving. Several meth... 详细信息
来源: 评论
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
MANIQA: Multi-dimension Attention Network for No-Reference I...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Sidi Wu, Tianhe Shi, Shuwei Lao, Shanshan Gong, Yuan Cao, Mingdeng Wang, Jiahao Yang, Yujiu Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China Tsinghua Univ Shenzhen Peoples R China
No-Reference Image Quality Assessment (NR-IQA) aims to assess the perceptual quality of images in accordance with human subjective perception. Unfortunately, existing NR-IQA methods are far from meeting the needs of p... 详细信息
来源: 评论
The 6th AI City Challenge
The 6th AI City Challenge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yao, Yue Zheng, Liang Rahman, Mohammed Shaiqur Venkatachalapathy, Archana Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan Chakraborty, Pranamesh Li, Alice Li, Shangru Chellappa, Rama NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Johns Hopkins Univ Baltimore MD 21218 USA
The 6th edition of the AI City Challenge specifically focuses on problems in two domains where there is tremendous unlocked potential at the intersection of computer vision and artificial intelligence: Intelligent Tra... 详细信息
来源: 评论
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bennequin, Etienne Tami, Myriam Toubhans, Antoine Hudelot, Celine Univ Paris Saclay Cent Supelec Gif Sur Yvette France Sicara Paris France
Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately rep... 详细信息
来源: 评论
Deep Normalized Cross-Modal Hashing with Bi-Direction Relation Reasoning
Deep Normalized Cross-Modal Hashing with Bi-Direction Relati...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Changchang Latapie, Hugo Liu, Gaowen Yan, Yan IIT Dept Comp Sci Chicago IL 60616 USA Cisco Res Emerging Technol & Incubat San Jose CA USA
Due to the continuous growth of large-scale multi-modal data and increasing requirements for retrieval speed, deep cross-modal hashing has gained increasing attention recently. Most of existing studies take a similari... 详细信息
来源: 评论